A scalable optical WDM multicast Beneš network with multi-channel wavelength converters

A scalable optical WDM multicast Beneš network with multi-channel wavelength converters An optical wavelength division multiplexing (WDM) multicast network interconnects an input signal on a given wavelength to one or more output fibers, possibly on different wavelengths (via wavelength conversion), while maintaining the signal in the optical domain. A key challenge in the design of scalable multicast networks is to reduce conversion complexity without affecting the switching capability and signal quality. In this article, we propose a scalable WDM multicast Beneš interconnection network with minimized conversion complexity. The proposed network is based on the Copy-and-Route architecture, and it uses multi- channel WCs (MCWCs) for wavelength conversion. The conversion complexity of the proposed design is O(F log2 W) (where F is the number of fibers and W is the number of wavelengths per fiber), which is smaller than the O(FW) complexity of the optimal design based on conventional single-channel WCs (SCWCs). We prove that, for W >  64 and for any value of F, the conversion complexity of the new design is strictly less than that of the optimal SCWC-based design regardless of the total number of wavelengths simultaneously converted by each MCWCs. Analyzes of conversion complexity of the proposed design for large values of W confirm considerable savings compared to the optimal SCWC-based design. For instance, for W = 256 and an for an arbitrary value of F, a practical implementation of the proposed design achieves 87% reduction in conversion complexity as compared to the optimal SCWC-based design. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

A scalable optical WDM multicast Beneš network with multi-channel wavelength converters

Loading next page...
 
/lp/springer_journal/a-scalable-optical-wdm-multicast-bene-network-with-multi-channel-VNvnGw8KiP
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-010-0293-8
Publisher site
See Article on Publisher Site

Abstract

An optical wavelength division multiplexing (WDM) multicast network interconnects an input signal on a given wavelength to one or more output fibers, possibly on different wavelengths (via wavelength conversion), while maintaining the signal in the optical domain. A key challenge in the design of scalable multicast networks is to reduce conversion complexity without affecting the switching capability and signal quality. In this article, we propose a scalable WDM multicast Beneš interconnection network with minimized conversion complexity. The proposed network is based on the Copy-and-Route architecture, and it uses multi- channel WCs (MCWCs) for wavelength conversion. The conversion complexity of the proposed design is O(F log2 W) (where F is the number of fibers and W is the number of wavelengths per fiber), which is smaller than the O(FW) complexity of the optimal design based on conventional single-channel WCs (SCWCs). We prove that, for W >  64 and for any value of F, the conversion complexity of the new design is strictly less than that of the optimal SCWC-based design regardless of the total number of wavelengths simultaneously converted by each MCWCs. Analyzes of conversion complexity of the proposed design for large values of W confirm considerable savings compared to the optimal SCWC-based design. For instance, for W = 256 and an for an arbitrary value of F, a practical implementation of the proposed design achieves 87% reduction in conversion complexity as compared to the optimal SCWC-based design.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Sep 16, 2010

References

  • Multicasting in optical transport networks
    Iannone, E.; Listanti, M.; Sabella, R.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off