A scalable optical WDM multicast Beneš network with multi-channel wavelength converters

A scalable optical WDM multicast Beneš network with multi-channel wavelength converters An optical wavelength division multiplexing (WDM) multicast network interconnects an input signal on a given wavelength to one or more output fibers, possibly on different wavelengths (via wavelength conversion), while maintaining the signal in the optical domain. A key challenge in the design of scalable multicast networks is to reduce conversion complexity without affecting the switching capability and signal quality. In this article, we propose a scalable WDM multicast Beneš interconnection network with minimized conversion complexity. The proposed network is based on the Copy-and-Route architecture, and it uses multi- channel WCs (MCWCs) for wavelength conversion. The conversion complexity of the proposed design is O(F log2 W) (where F is the number of fibers and W is the number of wavelengths per fiber), which is smaller than the O(FW) complexity of the optimal design based on conventional single-channel WCs (SCWCs). We prove that, for W >  64 and for any value of F, the conversion complexity of the new design is strictly less than that of the optimal SCWC-based design regardless of the total number of wavelengths simultaneously converted by each MCWCs. Analyzes of conversion complexity of the proposed design for large values of W confirm considerable savings compared to the optimal SCWC-based design. For instance, for W = 256 and an for an arbitrary value of F, a practical implementation of the proposed design achieves 87% reduction in conversion complexity as compared to the optimal SCWC-based design. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

A scalable optical WDM multicast Beneš network with multi-channel wavelength converters

Loading next page...
Springer US
Copyright © 2010 by Springer Science+Business Media, LLC
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


  • Multicasting in optical transport networks
    Iannone, E.; Listanti, M.; Sabella, R.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial