A RONI Based Visible Watermarking Approach for Medical Image Authentication

A RONI Based Visible Watermarking Approach for Medical Image Authentication Nowadays medical data in terms of image files are often exchanged between different hospitals for use in telemedicine and diagnosis. Visible watermarking being extensively used for Intellectual Property identification of such medical images, leads to serious issues if failed to identify proper regions for watermark insertion. In this paper, the Region of Non-Interest (RONI) based visible watermarking for medical image authentication is proposed. In this technique, to RONI of the cover medical image is first identified using Human Visual System (HVS) model. Later, watermark logo is visibly inserted into RONI of the cover medical image to get watermarked medical image. Finally, the watermarked medical image is compared with the original medical image for measurement of imperceptibility and authenticity of proposed scheme. The experimental results showed that this proposed scheme reduces the computational complexity and improves the PSNR when compared to many existing schemes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Medical Systems Springer Journals

A RONI Based Visible Watermarking Approach for Medical Image Authentication

Loading next page...
 
/lp/springer_journal/a-roni-based-visible-watermarking-approach-for-medical-image-VahqlcALOM
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Medicine & Public Health; Health Informatics; Health Informatics; Statistics for Life Sciences, Medicine, Health Sciences
ISSN
0148-5598
eISSN
1573-689X
D.O.I.
10.1007/s10916-017-0795-3
Publisher site
See Article on Publisher Site

Abstract

Nowadays medical data in terms of image files are often exchanged between different hospitals for use in telemedicine and diagnosis. Visible watermarking being extensively used for Intellectual Property identification of such medical images, leads to serious issues if failed to identify proper regions for watermark insertion. In this paper, the Region of Non-Interest (RONI) based visible watermarking for medical image authentication is proposed. In this technique, to RONI of the cover medical image is first identified using Human Visual System (HVS) model. Later, watermark logo is visibly inserted into RONI of the cover medical image to get watermarked medical image. Finally, the watermarked medical image is compared with the original medical image for measurement of imperceptibility and authenticity of proposed scheme. The experimental results showed that this proposed scheme reduces the computational complexity and improves the PSNR when compared to many existing schemes.

Journal

Journal of Medical SystemsSpringer Journals

Published: Aug 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off