Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Robust Fractional Order Parallel Control Structure for Flow Control using a Pneumatic Control Valve with Nonlinear and Uncertain Dynamics

A Robust Fractional Order Parallel Control Structure for Flow Control using a Pneumatic Control... Control of flow rate in industrial plants is an essential and crucial task, which is usually achieved by pneumatic control valves in industries. Use of these valves often incorporates nonlinear and uncertain dynamics in the control loop on account of its input-output characteristics, which may result in degradation of control loop performance. To address this concern, a robust and improved fractional order parallel control structure (FOPCS) for flow control is proposed in this paper. The proposed FOPCS is an extension of parallel control structure (PCS) with the help of fractional order calculus, to enhance the robustness in the control loop without compromising with control performance. Also, a global optimization technique, backtracking search algorithm was further employed to critically tune the parameters of control structures. This was done in order to obtain an optimized and enhanced performance from the control loop. Extensive runtime studies on a laboratory scale plant, using advanced data acquisition facilities, were carried out to showcase the effectiveness of developed FOPCS. Proposed FOPCS is thoroughly assessed in terms of servo, regulatory and robustness performance. A quantitative comparison of FOPCS with PCS is also made on the basis of integral of absolute error, integral of absolute rate of controller output and their algebraic summation. All the conducted experimental studies suggested that proposed FOPCS was able to address the issues pertaining to uncertain and nonlinear behaviour of pneumatic control valve in the flow control loop. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Arabian Journal for Science and Engineering Springer Journals

A Robust Fractional Order Parallel Control Structure for Flow Control using a Pneumatic Control Valve with Nonlinear and Uncertain Dynamics

Loading next page...
 
/lp/springer_journal/a-robust-fractional-order-parallel-control-structure-for-flow-control-bGYk7oERed

References (33)

Publisher
Springer Journals
Copyright
Copyright © 2018 by King Fahd University of Petroleum & Minerals
Subject
Engineering; Engineering, general; Science, Humanities and Social Sciences, multidisciplinary
ISSN
1319-8025
eISSN
2191-4281
DOI
10.1007/s13369-018-3328-6
Publisher site
See Article on Publisher Site

Abstract

Control of flow rate in industrial plants is an essential and crucial task, which is usually achieved by pneumatic control valves in industries. Use of these valves often incorporates nonlinear and uncertain dynamics in the control loop on account of its input-output characteristics, which may result in degradation of control loop performance. To address this concern, a robust and improved fractional order parallel control structure (FOPCS) for flow control is proposed in this paper. The proposed FOPCS is an extension of parallel control structure (PCS) with the help of fractional order calculus, to enhance the robustness in the control loop without compromising with control performance. Also, a global optimization technique, backtracking search algorithm was further employed to critically tune the parameters of control structures. This was done in order to obtain an optimized and enhanced performance from the control loop. Extensive runtime studies on a laboratory scale plant, using advanced data acquisition facilities, were carried out to showcase the effectiveness of developed FOPCS. Proposed FOPCS is thoroughly assessed in terms of servo, regulatory and robustness performance. A quantitative comparison of FOPCS with PCS is also made on the basis of integral of absolute error, integral of absolute rate of controller output and their algebraic summation. All the conducted experimental studies suggested that proposed FOPCS was able to address the issues pertaining to uncertain and nonlinear behaviour of pneumatic control valve in the flow control loop.

Journal

Arabian Journal for Science and EngineeringSpringer Journals

Published: Jun 4, 2018

There are no references for this article.