A rice phenomics study—phenotype scoring and seed propagation of a T-DNA insertion-induced rice mutant population

A rice phenomics study—phenotype scoring and seed propagation of a T-DNA insertion-induced rice... With the completion of the rice genome sequencing project, the next major challenge is the large-scale determination of gene function. As an important crop and a model organism, rice provides major insights into gene functions important for crop growth or production. Phenomics with detailed information about tagged populations provides a good tool for functional genomics analysis. By a T-DNA insertional mutagenesis approach, we have generated a rice mutant population containing 55,000 promoter trap and gene activation or knockout lines. Approximately 20,000 of these lines have known integration sites. The T0 and T1 plants were grown in net “houses” for two cropping seasons each year since 2003, with the mutant phenotypes recorded. Detailed data describing growth and development of these plants, in 11 categories and 65 subcategories, over the entire four-month growing season are available in a searchable database, along with the genetic segregation information and flanking sequence data. With the detailed data from more than 20,000 T1 lines and 12 plants per line, we estimated the mutation rates of the T1 population, as well the frequency of the dominant T0 mutants. The correlations among different mutation phenotypes are also calculated. Together, the information about mutant lines, their integration sites, and the phenotypes make this collection, the Taiwan Rice Insertion Mutants (TRIM), a good resource for rice phenomics study. Ten T2 seeds per line can be distributed to researchers upon request. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals
Loading next page...
 
/lp/springer_journal/a-rice-phenomics-study-phenotype-scoring-and-seed-propagation-of-a-t-9ywl6ZytMB
Publisher
Springer Netherlands
Copyright
Copyright © 2007 by The Author(s)
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-007-9218-z
Publisher site
See Article on Publisher Site

Abstract

With the completion of the rice genome sequencing project, the next major challenge is the large-scale determination of gene function. As an important crop and a model organism, rice provides major insights into gene functions important for crop growth or production. Phenomics with detailed information about tagged populations provides a good tool for functional genomics analysis. By a T-DNA insertional mutagenesis approach, we have generated a rice mutant population containing 55,000 promoter trap and gene activation or knockout lines. Approximately 20,000 of these lines have known integration sites. The T0 and T1 plants were grown in net “houses” for two cropping seasons each year since 2003, with the mutant phenotypes recorded. Detailed data describing growth and development of these plants, in 11 categories and 65 subcategories, over the entire four-month growing season are available in a searchable database, along with the genetic segregation information and flanking sequence data. With the detailed data from more than 20,000 T1 lines and 12 plants per line, we estimated the mutation rates of the T1 population, as well the frequency of the dominant T0 mutants. The correlations among different mutation phenotypes are also calculated. Together, the information about mutant lines, their integration sites, and the phenotypes make this collection, the Taiwan Rice Insertion Mutants (TRIM), a good resource for rice phenomics study. Ten T2 seeds per line can be distributed to researchers upon request.

Journal

Plant Molecular BiologySpringer Journals

Published: Aug 14, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off