A Review of Geophysical Exploration Technology for Mine Water Disaster in China: Applications and Trends

A Review of Geophysical Exploration Technology for Mine Water Disaster in China: Applications and... Geophysical exploration can be effective in detecting and monitoring potential sources of coal mine water in-rushes and underground watercourses. Generally, in-mine seismic, DC resistivity, and transient electromagnetic methods are used for such purposes in China. However, such technologies can be influenced by many factors, such as roadways, fissures in the surrounding rocks, and various secondary conditions. Our review of current geophysical methods and tools concludes that further basic research should be carried out on geophysical field propagation in the whole space, data collection methods, and inversion methods appropriate for the special environment of coal mines. Moreover, borehole and roadway space should be designed to incorporate effective geophysical drilling, cross-hole exploration, drilling–roadway exploration, and roadway–roadway exploration. Future hydrogeophysical exploration research should focus on comprehensive geophysical methods combining multi-field synergistic observations with multi-field data integration and automatic monitoring as well as early warning systems for mine water disasters combining real-time processing and analysis of exploration equipment with Internet of Things technology. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mine Water and the Environment Springer Journals

A Review of Geophysical Exploration Technology for Mine Water Disaster in China: Applications and Trends

Loading next page...
 
/lp/springer_journal/a-review-of-geophysical-exploration-technology-for-mine-water-disaster-0czkjLzm4d
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Earth Sciences; Geology; Water Quality/Water Pollution; Hydrogeology; Mineral Resources; Ecotoxicology; Industrial Pollution Prevention
ISSN
1025-9112
eISSN
1616-1068
D.O.I.
10.1007/s10230-017-0467-z
Publisher site
See Article on Publisher Site

Abstract

Geophysical exploration can be effective in detecting and monitoring potential sources of coal mine water in-rushes and underground watercourses. Generally, in-mine seismic, DC resistivity, and transient electromagnetic methods are used for such purposes in China. However, such technologies can be influenced by many factors, such as roadways, fissures in the surrounding rocks, and various secondary conditions. Our review of current geophysical methods and tools concludes that further basic research should be carried out on geophysical field propagation in the whole space, data collection methods, and inversion methods appropriate for the special environment of coal mines. Moreover, borehole and roadway space should be designed to incorporate effective geophysical drilling, cross-hole exploration, drilling–roadway exploration, and roadway–roadway exploration. Future hydrogeophysical exploration research should focus on comprehensive geophysical methods combining multi-field synergistic observations with multi-field data integration and automatic monitoring as well as early warning systems for mine water disasters combining real-time processing and analysis of exploration equipment with Internet of Things technology.

Journal

Mine Water and the EnvironmentSpringer Journals

Published: Jun 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off