A review of definitions of the Himalayan Main Central Thrust

A review of definitions of the Himalayan Main Central Thrust Most workers regard the Main Central Thrust (MCT) as one of the key high strain zones in the Himalaya because it accommodated at least 90 km of shortening, because that shortening exhumed and buried hanging wall and footwall rocks, and due to geometric and kinematic connections between the Main Central Thrust and the structurally overlying South Tibet Detachment. Geologists currently employ three unrelated definitions of the MCT: metamorphic-rheological, age of motion-structural, or protolith boundary-structural. These disparate definitions generate map and cross-section MCT positions that vary by up to 5 km of structural distance. The lack of consensus and consequent shifting locations impede advances in our understanding of the tectonic development of the orogen. Here, I review pros and cons of the three MCT definitions in current use. None of these definitions is flawless. The metamorphic-rheological and age of motion-structural definitions routinely fail throughout the orogen, whereas the protolith boundary-structural definition may fail only in rare cases, all limited to sectors of the eastern Himalaya. Accordingly, a definition based on high strain zone geometry and kinematics combined with identification of a protolith boundary is the best working definition of the MCT. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Earth Sciences Springer Journals

A review of definitions of the Himalayan Main Central Thrust

Loading next page...
 
/lp/springer_journal/a-review-of-definitions-of-the-himalayan-main-central-thrust-VBHgFDZpMt
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Earth Sciences; Geology; Geophysics/Geodesy; Sedimentology; Structural Geology; Mineral Resources; Geochemistry
ISSN
1437-3254
eISSN
1437-3262
D.O.I.
10.1007/s00531-016-1419-8
Publisher site
See Article on Publisher Site

Abstract

Most workers regard the Main Central Thrust (MCT) as one of the key high strain zones in the Himalaya because it accommodated at least 90 km of shortening, because that shortening exhumed and buried hanging wall and footwall rocks, and due to geometric and kinematic connections between the Main Central Thrust and the structurally overlying South Tibet Detachment. Geologists currently employ three unrelated definitions of the MCT: metamorphic-rheological, age of motion-structural, or protolith boundary-structural. These disparate definitions generate map and cross-section MCT positions that vary by up to 5 km of structural distance. The lack of consensus and consequent shifting locations impede advances in our understanding of the tectonic development of the orogen. Here, I review pros and cons of the three MCT definitions in current use. None of these definitions is flawless. The metamorphic-rheological and age of motion-structural definitions routinely fail throughout the orogen, whereas the protolith boundary-structural definition may fail only in rare cases, all limited to sectors of the eastern Himalaya. Accordingly, a definition based on high strain zone geometry and kinematics combined with identification of a protolith boundary is the best working definition of the MCT.

Journal

International Journal of Earth SciencesSpringer Journals

Published: Nov 3, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off