A resilient star-ring optical broadcast-and-select network with a centralized multi-carrier light source

A resilient star-ring optical broadcast-and-select network with a centralized multi-carrier light... This article presents a resilient star-ring optical broadcast-and-select network with a centralized multi-carrier light source (C-MCLS). It consists of a star part network and a ring part network. Optical carriers generated by the C-MCLS are broadcast to all network nodes, which select and utilize them for data transmission. Optical carrier distribution as well as data transmission and receiving are performed in the star part network. The ring part network is for fiber failure recovery. The network resilience property enables the design of a fast distributed failure recovery scheme to deal with single and multiple fiber failures. We introduce a fiber connection automatic protection switching (FC-APS) architecture that only consists of optical couplers and 1 × 2 optical switches for each network node. Based on the FC-APS architecture, we design a distributed failure recovery scheme to recover the carriers and data affected by fiber failures. The fiber failure detection and failure recovery operations are performed by each network node independently only using its local information. We evaluate the recovery time of the distributed failure recovery scheme compared with that of the centralized one. Numerical results show that the distributed scheme greatly reduces the recovery time compared to the centralized configuration in the recoveries of both single and multiple fiber failures. Optical power loss analysis and compensation of the recovery routes in the distributed scheme are also presented. We show the required number of optical amplifiers for the longest recovery route in the distributed scheme under different numbers of network nodes and fiber span lengths. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

A resilient star-ring optical broadcast-and-select network with a centralized multi-carrier light source

Loading next page...
 
/lp/springer_journal/a-resilient-star-ring-optical-broadcast-and-select-network-with-a-pAPF90WluX
Publisher
Springer US
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-010-0271-1
Publisher site
See Article on Publisher Site

Abstract

This article presents a resilient star-ring optical broadcast-and-select network with a centralized multi-carrier light source (C-MCLS). It consists of a star part network and a ring part network. Optical carriers generated by the C-MCLS are broadcast to all network nodes, which select and utilize them for data transmission. Optical carrier distribution as well as data transmission and receiving are performed in the star part network. The ring part network is for fiber failure recovery. The network resilience property enables the design of a fast distributed failure recovery scheme to deal with single and multiple fiber failures. We introduce a fiber connection automatic protection switching (FC-APS) architecture that only consists of optical couplers and 1 × 2 optical switches for each network node. Based on the FC-APS architecture, we design a distributed failure recovery scheme to recover the carriers and data affected by fiber failures. The fiber failure detection and failure recovery operations are performed by each network node independently only using its local information. We evaluate the recovery time of the distributed failure recovery scheme compared with that of the centralized one. Numerical results show that the distributed scheme greatly reduces the recovery time compared to the centralized configuration in the recoveries of both single and multiple fiber failures. Optical power loss analysis and compensation of the recovery routes in the distributed scheme are also presented. We show the required number of optical amplifiers for the longest recovery route in the distributed scheme under different numbers of network nodes and fiber span lengths.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Aug 22, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off