A Residual Gradient Fuzzy Reinforcement Learning Algorithm for Differential Games

A Residual Gradient Fuzzy Reinforcement Learning Algorithm for Differential Games In this work, we propose a new fuzzy reinforcement learning algorithm for differential games that have continuous state and action spaces. The proposed algorithm uses function approximation systems whose parameters are updated differently from the updating mechanisms used in the algorithms proposed in the literature. Unlike the algorithms presented in the literature which use the direct algorithms to update the parameters of their function approximation systems, the proposed algorithm uses the residual gradient value iteration algorithm to tune the input and output parameters of its function approximation systems. It has been shown in the literature that the direct algorithms may not converge to an answer in some cases, while the residual gradient algorithms are always guaranteed to converge to a local minimum. The proposed algorithm is called the residual gradient fuzzy actor–critic learning (RGFACL) algorithm. The proposed algorithm is used to learn three different pursuit–evasion differential games. Simulation results show that the performance of the proposed RGFACL algorithm outperforms the performance of the fuzzy actor–critic learning and the Q-learning fuzzy inference system algorithms in terms of convergence and speed of learning. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Fuzzy Systems Springer Journals

A Residual Gradient Fuzzy Reinforcement Learning Algorithm for Differential Games

Loading next page...
 
/lp/springer_journal/a-residual-gradient-fuzzy-reinforcement-learning-algorithm-for-0PEWNyAxD8
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Taiwan Fuzzy Systems Association and Springer-Verlag Berlin Heidelberg
Subject
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Operations Research, Management Science
ISSN
1562-2479
eISSN
2199-3211
D.O.I.
10.1007/s40815-016-0284-8
Publisher site
See Article on Publisher Site

Abstract

In this work, we propose a new fuzzy reinforcement learning algorithm for differential games that have continuous state and action spaces. The proposed algorithm uses function approximation systems whose parameters are updated differently from the updating mechanisms used in the algorithms proposed in the literature. Unlike the algorithms presented in the literature which use the direct algorithms to update the parameters of their function approximation systems, the proposed algorithm uses the residual gradient value iteration algorithm to tune the input and output parameters of its function approximation systems. It has been shown in the literature that the direct algorithms may not converge to an answer in some cases, while the residual gradient algorithms are always guaranteed to converge to a local minimum. The proposed algorithm is called the residual gradient fuzzy actor–critic learning (RGFACL) algorithm. The proposed algorithm is used to learn three different pursuit–evasion differential games. Simulation results show that the performance of the proposed RGFACL algorithm outperforms the performance of the fuzzy actor–critic learning and the Q-learning fuzzy inference system algorithms in terms of convergence and speed of learning.

Journal

International Journal of Fuzzy SystemsSpringer Journals

Published: Feb 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off