A Reliable Time-Domain Spectrum Hole Prediction for Cognitive Radio Networks Using Regularized Multi-Layer Perceptron

A Reliable Time-Domain Spectrum Hole Prediction for Cognitive Radio Networks Using Regularized... A novel spectrum prediction technique based on multi-layer perceptron is proposed to effectively identify spectrum holes in time domain for cognitive radio networks (CRNs). This scheme adopts a more comprehensive input space (e.g. traffic parameters of primary network) to reduce the sampling bias resulted from simple binary input space (e.g. status of spectrum holes) which is commonly used in the conventional spectrum hole prediction schemes. Additionally, regularization is proposed to mitigate the impact of the noise introduced by the stochastic CRNs. The simulation results show that a more reliable spectrum hole predictor can be obtained if being trained using our proposed novel input space and regularization mechanism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

A Reliable Time-Domain Spectrum Hole Prediction for Cognitive Radio Networks Using Regularized Multi-Layer Perceptron

Loading next page...
 
/lp/springer_journal/a-reliable-time-domain-spectrum-hole-prediction-for-cognitive-radio-tzhDrEy0mI
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4193-4
Publisher site
See Article on Publisher Site

Abstract

A novel spectrum prediction technique based on multi-layer perceptron is proposed to effectively identify spectrum holes in time domain for cognitive radio networks (CRNs). This scheme adopts a more comprehensive input space (e.g. traffic parameters of primary network) to reduce the sampling bias resulted from simple binary input space (e.g. status of spectrum holes) which is commonly used in the conventional spectrum hole prediction schemes. Additionally, regularization is proposed to mitigate the impact of the noise introduced by the stochastic CRNs. The simulation results show that a more reliable spectrum hole predictor can be obtained if being trained using our proposed novel input space and regularization mechanism.

Journal

Wireless Personal CommunicationsSpringer Journals

Published: Apr 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off