A refractive index-matched facility for fluid–structure interaction studies of pulsatile and oscillating flow in elastic vessels of adjustable compliance

A refractive index-matched facility for fluid–structure interaction studies of pulsatile and... The flow field in the respiratory and vascular system is known to be influenced by the flexibility of the walls. However, up to now, most of the experimental biofluidic investigations have been performed in rigid models due to the complexity and necessity of optical access. In this paper, a facility and measurement techniques for studying oscillating and pulsatile flow in elastic vessels will be described. The investigated vessel models have been adapted such that fluid-mechanical and structure-mechanical characteristics represent realistic blood flows in medium blood vessels. That is, characteristic parameters, i.e., the Reynolds and Womersley number, as well as mechanical properties of the flexible wall, i.e., the Young’s modulus and the material compliance, have been chosen to reasonably represent realistic flow conditions. First, a method to manufacture elastic models, which mimic the structure-mechanical properties of vascular vessels is described. The models possess a tunable compliance and are made of transparent polydimethylsiloxane. Second, the experimental setup of the flow facility will be elucidated. The flow facility allows to mimic pulsatile flow at physiologically relevant Reynolds and Womersley numbers. The precise form of the flow cycle can individually be controlled. Water/glycerine is used as flow medium for refractive index matching particle image velocimetry (PIV) measurements. The PIV recordings not only allow to assess the mean cross-sectional flow field but also further enable to simultaneously detect the movement of the flexible wall. Additionally, the local wall-shear stress can be obtained from the single-pixel line resolved near-wall flow field. To confirm the flow conditions of the oscillatory laminar flow inside the flow facility and to evaluate the ability to assess the flow field, measurements in a straight, uniform diameter, rigid Plexiglas pipe under identical conditions to those of the oscillating flow in the flexible vessel have been performed. The measurements of oscillating flow in the rigid pipe corroborate the experimentally obtained flow field and the wall-shear stress to well confirm Womersley’s analytical solution and thereby evidence the quality of the flow facility and of the measurement techniques. To further study the detectability of the vessel deformation, oscillating flow at Reynolds numbers based on the non-dilated vessel diameter D and peak velocities Re D ranging from 1,000 to 1,750 and at Womersley numbers α ranging from 5 to 17.5 has been investigated in an elastic vessel. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

A refractive index-matched facility for fluid–structure interaction studies of pulsatile and oscillating flow in elastic vessels of adjustable compliance

Loading next page...
 
/lp/springer_journal/a-refractive-index-matched-facility-for-fluid-structure-interaction-TshyRYnCzy
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by The Author(s)
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-009-0681-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial