Access the full text.
Sign up today, get DeepDyve free for 14 days.
The purpose of kernel adaptive filtering (KAF) is to map input samples into reproducing kernel Hilbert spaces and use the stochastic gradient approximation to address learning problems. However, the growth of the weighted networks for KAF based on existing kernel functions leads to high computational complexity. This paper introduces a reduced Gaussian kernel that is a finite-order Taylor expansion of a decomposed Gaussian kernel. The corresponding reduced Gaussian kernel least-mean-square (RGKLMS) algorithm is derived. The proposed algorithm avoids the sustained growth of the weighted network in a nonstationary environment via an implicit feature map. To verify the performance of the proposed algorithm, extensive simulations are conducted based on scenarios involving time-series prediction and nonlinear channel equalization, thereby proving that the RGKLMS algorithm is a universal approximator under suitable conditions. The simulation results also demonstrate that the RGKLMS algorithm can exhibit a comparable steady-state mean-square-error performance with a much lower computational complexity compared with other algorithms.
Circuits, Systems and Signal Processing – Springer Journals
Published: Jun 2, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.