A recommendation approach for programming online judges supported by data preprocessing techniques

A recommendation approach for programming online judges supported by data preprocessing techniques The use of programming online judges (POJ) to support students acquiring programming skills is common nowadays because this type of software contains a large collection of programming exercises to be solved by students. A POJ not only provides exercises but also automates the code compilation and its evaluation process. A common problem that students face when using POJ is information overload, as choosing the right problem to solve can be quite frustrating due to the large number of problems offered. The integration of current POJs into e-learning systems such as Intelligent Tutoring Systems (ITSs) is hard because of the lack of necessary information in ITSs. Hence, the aim of this paper is to support students with the information overload problem by using a collaborative filtering recommendation approach that filters out programming problems suitable for students’ programming skills. It uses an enriched user-problem matrix that implies a better student role representation, facilitating the computation of closer neighborhoods and hence a more accurate recommendation. Additionally a novel data preprocessing step that manages anomalous users’ behaviors that could affect the recommendation generation is also integrated in the recommendation process. A case study is carried out on a POJ real dataset showing that the proposal outperforms other previous approaches. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Intelligence Springer Journals

A recommendation approach for programming online judges supported by data preprocessing techniques

Loading next page...
 
/lp/springer_journal/a-recommendation-approach-for-programming-online-judges-supported-by-uw7wtCmrvP
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Mechanical Engineering; Manufacturing, Machines, Tools
ISSN
0924-669X
eISSN
1573-7497
D.O.I.
10.1007/s10489-016-0892-x
Publisher site
See Article on Publisher Site

Abstract

The use of programming online judges (POJ) to support students acquiring programming skills is common nowadays because this type of software contains a large collection of programming exercises to be solved by students. A POJ not only provides exercises but also automates the code compilation and its evaluation process. A common problem that students face when using POJ is information overload, as choosing the right problem to solve can be quite frustrating due to the large number of problems offered. The integration of current POJs into e-learning systems such as Intelligent Tutoring Systems (ITSs) is hard because of the lack of necessary information in ITSs. Hence, the aim of this paper is to support students with the information overload problem by using a collaborative filtering recommendation approach that filters out programming problems suitable for students’ programming skills. It uses an enriched user-problem matrix that implies a better student role representation, facilitating the computation of closer neighborhoods and hence a more accurate recommendation. Additionally a novel data preprocessing step that manages anomalous users’ behaviors that could affect the recommendation generation is also integrated in the recommendation process. A case study is carried out on a POJ real dataset showing that the proposal outperforms other previous approaches.

Journal

Applied IntelligenceSpringer Journals

Published: Mar 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off