A real-time model-based approach for the reconstruction of fluid flows induced by microorganisms

A real-time model-based approach for the reconstruction of fluid flows induced by microorganisms An experiment on living microorganisms is conducted to gain insight into their motion and fluid exchange characteristics. Biocompatible microscopic particle image velocimetry (PIV)-systems are used to capture images of seeded particles in the induced fluid flows. To enhance the abilities of these devices we present a model-based approach for the reconstruction of admissible flow fields from captured images. A priori knowledge of the physical model of the flow is used to iteratively refine a predicted flow field. A physics-based filter operation generates a velocity field that is consistent with the model of incompressible laminar flows described by the Navier–Stokes equations. Interactive steering of the reconstruction process is achieved by exploiting programmable graphics hardware as a co-processor for numerical computations. To validate our method, we estimate velocity vector fields from synthetic image pairs of flow scenarios for which ground truth velocity fields exist and real-world image sequences of the flow induced by sessile microorganisms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

A real-time model-based approach for the reconstruction of fluid flows induced by microorganisms

Loading next page...
 
/lp/springer_journal/a-real-time-model-based-approach-for-the-reconstruction-of-fluid-flows-Vm0mNb9cvG
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-008-0472-x
Publisher site
See Article on Publisher Site

Abstract

An experiment on living microorganisms is conducted to gain insight into their motion and fluid exchange characteristics. Biocompatible microscopic particle image velocimetry (PIV)-systems are used to capture images of seeded particles in the induced fluid flows. To enhance the abilities of these devices we present a model-based approach for the reconstruction of admissible flow fields from captured images. A priori knowledge of the physical model of the flow is used to iteratively refine a predicted flow field. A physics-based filter operation generates a velocity field that is consistent with the model of incompressible laminar flows described by the Navier–Stokes equations. Interactive steering of the reconstruction process is achieved by exploiting programmable graphics hardware as a co-processor for numerical computations. To validate our method, we estimate velocity vector fields from synthetic image pairs of flow scenarios for which ground truth velocity fields exist and real-world image sequences of the flow induced by sessile microorganisms.

Journal

Experiments in FluidsSpringer Journals

Published: Feb 15, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off