Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A rapid and intelligent approach to design forming shape model for precise manufacturing of flanged part

A rapid and intelligent approach to design forming shape model for precise manufacturing of... Adjusting the part shape with complex flanges to compensate springback deformation is key to forming shape design for manufacturing rapidly and precisely. Classical forming shape design by displacement adjustment (DA) method using finite element (FE) simulation is usually time-consuming and not accurate enough for complex surface part in industrial application. In this paper, the forming shape is modeled by changing the relations of geometric features of part model with the new flange control surfaces directly. Control surface processing (CSP) method is presented including control surface trimming, cross section division, springback compensation, and extending to design forming shape model of doubly curved flange part with joggles rapidly. The algorithms of cross section curves division of control surfaces and subsequent subdivision of each curve with circular arc and line segments are proposed. A case-based reasoning (CBR) technique and gray relation analysis (GRA) are used to support the intelligent springback prediction of each bending segment of the cross section curve. The geometric data of control surface is expressed in XML format to realize the integration of the CAD-based tools of control surface division and compensation with the Web-based springback prediction system. The approach is demonstrated on an industrial aircraft wing rib part. The forming shape model could be designed rapidly by comparison with DA method. The part shape deviations of flange angle (−0.465° ~ 0.528°) and surface position (−0.3 mm ~ 0.3 mm) were detected by comparing the desired geometry with the actual digital formed part shape, and the results indicate that the approach can achieve the industrial part manufacturing rapidly and precisely. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

A rapid and intelligent approach to design forming shape model for precise manufacturing of flanged part

Loading next page...
 
/lp/springer_journal/a-rapid-and-intelligent-approach-to-design-forming-shape-model-for-aejvc6Q1Ip

References (30)

Publisher
Springer Journals
Copyright
Copyright © 2017 by The Author(s)
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
DOI
10.1007/s00170-016-9935-z
Publisher site
See Article on Publisher Site

Abstract

Adjusting the part shape with complex flanges to compensate springback deformation is key to forming shape design for manufacturing rapidly and precisely. Classical forming shape design by displacement adjustment (DA) method using finite element (FE) simulation is usually time-consuming and not accurate enough for complex surface part in industrial application. In this paper, the forming shape is modeled by changing the relations of geometric features of part model with the new flange control surfaces directly. Control surface processing (CSP) method is presented including control surface trimming, cross section division, springback compensation, and extending to design forming shape model of doubly curved flange part with joggles rapidly. The algorithms of cross section curves division of control surfaces and subsequent subdivision of each curve with circular arc and line segments are proposed. A case-based reasoning (CBR) technique and gray relation analysis (GRA) are used to support the intelligent springback prediction of each bending segment of the cross section curve. The geometric data of control surface is expressed in XML format to realize the integration of the CAD-based tools of control surface division and compensation with the Web-based springback prediction system. The approach is demonstrated on an industrial aircraft wing rib part. The forming shape model could be designed rapidly by comparison with DA method. The part shape deviations of flange angle (−0.465° ~ 0.528°) and surface position (−0.3 mm ~ 0.3 mm) were detected by comparing the desired geometry with the actual digital formed part shape, and the results indicate that the approach can achieve the industrial part manufacturing rapidly and precisely.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Jan 16, 2017

There are no references for this article.