A Quantum Treatment of Public Goods Economics

A Quantum Treatment of Public Goods Economics Quantum generalizations of conventional games broaden the range of available strategies, which can help improve outcomes for the participants. With many players, such quantum games can involve entanglement among many states which is difficult to implement, especially if the states must be communicated over some distance. This paper describes a quantum approach to the economically significant n-player public goods game that requires only two-particle entanglement and is thus much easier to implement than more general quantum mechanisms. In spite of the large temptation to free ride on the efforts of others in the original game, two-particle entanglement is sufficient to give near optimal expected payoff when players use a simple mixed strategy for which no player can benefit by making different choices. This mechanism can also address some heterogeneous preferences among the players. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

A Quantum Treatment of Public Goods Economics

Loading next page...
 
/lp/springer_journal/a-quantum-treatment-of-public-goods-economics-GLxwX2faao
Publisher
Springer Journals
Copyright
Copyright © 2002 by Plenum Publishing Corporation
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1023/A:1024070415465
Publisher site
See Article on Publisher Site

Abstract

Quantum generalizations of conventional games broaden the range of available strategies, which can help improve outcomes for the participants. With many players, such quantum games can involve entanglement among many states which is difficult to implement, especially if the states must be communicated over some distance. This paper describes a quantum approach to the economically significant n-player public goods game that requires only two-particle entanglement and is thus much easier to implement than more general quantum mechanisms. In spite of the large temptation to free ride on the efforts of others in the original game, two-particle entanglement is sufficient to give near optimal expected payoff when players use a simple mixed strategy for which no player can benefit by making different choices. This mechanism can also address some heterogeneous preferences among the players.

Journal

Quantum Information ProcessingSpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off