A quantum production model

A quantum production model The production system is a theoretical model of computation relevant to the artificial intelligence field allowing for problem solving procedures such as hierarchical tree search. In this work we explore some of the connections between artificial intelligence and quantum computation by presenting a model for a quantum production system. Our approach focuses on initially developing a model for a reversible production system which is a simple mapping of Bennett’s reversible Turing machine. We then expand on this result in order to accommodate for the requirements of quantum computation. We present the details of how our proposition can be used alongside Grover’s algorithm in order to yield a speedup comparatively to its classical counterpart. We discuss the requirements associated with such a speedup and how it compares against a similar quantum hierarchical search approach. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

A quantum production model

Loading next page...
 
/lp/springer_journal/a-quantum-production-model-j9VYn5HS7u
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Physics; Computer Science, general; Theoretical, Mathematical and Computational Physics; Quantum Physics; Mathematics, general; Physics, general
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-011-0241-2
Publisher site
See Article on Publisher Site

Abstract

The production system is a theoretical model of computation relevant to the artificial intelligence field allowing for problem solving procedures such as hierarchical tree search. In this work we explore some of the connections between artificial intelligence and quantum computation by presenting a model for a quantum production system. Our approach focuses on initially developing a model for a reversible production system which is a simple mapping of Bennett’s reversible Turing machine. We then expand on this result in order to accommodate for the requirements of quantum computation. We present the details of how our proposition can be used alongside Grover’s algorithm in order to yield a speedup comparatively to its classical counterpart. We discuss the requirements associated with such a speedup and how it compares against a similar quantum hierarchical search approach.

Journal

Quantum Information ProcessingSpringer Journals

Published: Apr 30, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off