A quantum mechanics-based algorithm for vessel segmentation in retinal images

A quantum mechanics-based algorithm for vessel segmentation in retinal images Blood vessel segmentation is an important step in retinal image analysis. It is one of the steps required for computer-aided detection of ophthalmic diseases. In this paper, a novel quantum mechanics-based algorithm for retinal vessel segmentation is presented. The algorithm consists of three major steps. The first step is the preprocessing of the images to prepare the images for further processing. The second step is feature extraction where a set of four features is generated at each image pixel. These features are then combined using a nonlinear transformation for dimensionality reduction. The final step is applying a recently proposed quantum mechanics-based framework for image processing. In this step, pixels are mapped to quantum systems that are allowed to evolve from an initial state to a final state governed by Schrödinger’s equation. The evolution is controlled by the Hamiltonian operator which is a function of the extracted features at each pixel. A measurement step is consequently performed to determine whether the pixel belongs to vessel or non-vessel classes. Many functional forms of the Hamiltonian are proposed, and the best performing form was selected. The algorithm is tested on the publicly available DRIVE database. The average results for sensitivity, specificity, and accuracy are 80.29, 97.34, and 95.83 %, respectively. These results are compared to some recently published techniques showing the superior performance of the proposed method. Finally, the implementation of the algorithm on a quantum computer and the challenges facing this implementation are introduced. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

A quantum mechanics-based algorithm for vessel segmentation in retinal images

Loading next page...
 
/lp/springer_journal/a-quantum-mechanics-based-algorithm-for-vessel-segmentation-in-retinal-hQtsL0NMPp
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-016-1292-1
Publisher site
See Article on Publisher Site

Abstract

Blood vessel segmentation is an important step in retinal image analysis. It is one of the steps required for computer-aided detection of ophthalmic diseases. In this paper, a novel quantum mechanics-based algorithm for retinal vessel segmentation is presented. The algorithm consists of three major steps. The first step is the preprocessing of the images to prepare the images for further processing. The second step is feature extraction where a set of four features is generated at each image pixel. These features are then combined using a nonlinear transformation for dimensionality reduction. The final step is applying a recently proposed quantum mechanics-based framework for image processing. In this step, pixels are mapped to quantum systems that are allowed to evolve from an initial state to a final state governed by Schrödinger’s equation. The evolution is controlled by the Hamiltonian operator which is a function of the extracted features at each pixel. A measurement step is consequently performed to determine whether the pixel belongs to vessel or non-vessel classes. Many functional forms of the Hamiltonian are proposed, and the best performing form was selected. The algorithm is tested on the publicly available DRIVE database. The average results for sensitivity, specificity, and accuracy are 80.29, 97.34, and 95.83 %, respectively. These results are compared to some recently published techniques showing the superior performance of the proposed method. Finally, the implementation of the algorithm on a quantum computer and the challenges facing this implementation are introduced.

Journal

Quantum Information ProcessingSpringer Journals

Published: Mar 15, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off