A Quantitative Friction-Based Approach of the Limiting Shear Stress Pressure and Temperature Dependence

A Quantitative Friction-Based Approach of the Limiting Shear Stress Pressure and Temperature... Friction in highly loaded lubricated contacts (where the pressure is greater than 1 GPa) may present a plateau at intermediate slide-to-roll ratio, known in the literature as the limiting shear stress (LSS) plateau. Its physical origins and its dependence to the operating conditions are still unclear, that is why predicting friction in such contacts still remains an issue. Apart from the nature of the lubricant, the two main parameters influencing the friction plateau value are pressure and temperature. The literature provides several empirical expressions of the LSS which either consider the pressure influence only, or both pressure and temperature but almost always with coupled terms. Therefore, the published LSS values derived from friction measurements can be considered as the macroscopic consequence of the influence of pressure and temperature but also of shear heating that occurs in sliding highly loaded contacts. In this paper, the contribution of each parameter was studied separately, i.e. through experiments accrued out under nominal isothermal conditions, but conducted at different temperatures and pressures on two lubricants: a synthetic ester (benzyl benzoate) and a turbine mineral oil. A new LSS model was derived, based only on the mechanical (i.e. shear) contribution to the LSS. Surprisingly, a simple linear dependence of the LSS with both pressure and temperature was found, revealing that the influence of each of the two parameters is decoupled from the other. As far as we know, this is the first time that such an uncoupled LSS model in pressure and temperature is reported. This work offers a better quantification of the response of lubricants submitted to very high pressure and high shear: it should help to improve friction prediction in highly loaded lubricated contacts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tribology Letters Springer Journals

A Quantitative Friction-Based Approach of the Limiting Shear Stress Pressure and Temperature Dependence

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media, LLC
Materials Science; Tribology, Corrosion and Coatings; Surfaces and Interfaces, Thin Films; Theoretical and Applied Mechanics; Physical Chemistry; Nanotechnology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial