A QTL affecting daily feed intake maps to Chromosome 2 in pigs

A QTL affecting daily feed intake maps to Chromosome 2 in pigs Our understanding of the molecular genetic basis of several key performance traits in pigs has been significantly advanced through the quantitative trait loci (QTL) mapping approach. However, in contrast to growth and fatness traits, the genetic basis of feed intake traits has rarely been investigated through QTL mapping. Since feed intake is an important component of efficient pig production, the identification of QTL affecting feed intake may lead to the identification of genetic markers that can be used in selection programs. In this study a QTL analysis for feed intake, feeding behavior, and growth traits was performed in an F2 population derived from a cross between Chinese Meishan and European Large White pigs. A QTL with a significant effect on daily feed intake (DFI) was identified on Sus scrofa Chromosome 2 (SSC2). A number of suggestive QTL with effects on daily gain, feed conversion, and feeding behavior traits were also located. The significant QTL lies close to a previously identified mutation in the insulin-like growth factor 2 gene (IGF2) that affects carcass composition traits, although the IGF2 mutation is not segregating in the populations analyzed in the current study. Therefore, a distinct causal variant may exist on the P arm of SSC2 with an effect on feed intake. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

A QTL affecting daily feed intake maps to Chromosome 2 in pigs

Loading next page...
 
/lp/springer_journal/a-qtl-affecting-daily-feed-intake-maps-to-chromosome-2-in-pigs-LWAhCGcJVZ
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer Science+Business Media Inc.
Subject
Life Sciences; Anatomy; Cell Biology; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-004-4026-0
Publisher site
See Article on Publisher Site

Abstract

Our understanding of the molecular genetic basis of several key performance traits in pigs has been significantly advanced through the quantitative trait loci (QTL) mapping approach. However, in contrast to growth and fatness traits, the genetic basis of feed intake traits has rarely been investigated through QTL mapping. Since feed intake is an important component of efficient pig production, the identification of QTL affecting feed intake may lead to the identification of genetic markers that can be used in selection programs. In this study a QTL analysis for feed intake, feeding behavior, and growth traits was performed in an F2 population derived from a cross between Chinese Meishan and European Large White pigs. A QTL with a significant effect on daily feed intake (DFI) was identified on Sus scrofa Chromosome 2 (SSC2). A number of suggestive QTL with effects on daily gain, feed conversion, and feeding behavior traits were also located. The significant QTL lies close to a previously identified mutation in the insulin-like growth factor 2 gene (IGF2) that affects carcass composition traits, although the IGF2 mutation is not segregating in the populations analyzed in the current study. Therefore, a distinct causal variant may exist on the P arm of SSC2 with an effect on feed intake.

Journal

Mammalian GenomeSpringer Journals

Published: Jan 1, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off