A PTAS for the Geometric Connected Facility Location Problem

A PTAS for the Geometric Connected Facility Location Problem We consider the Geometric Connected Facility Location Problem (GCFLP): given a set of clients C ⊂ ℝ d $\mathcal {C} \subset \mathbb {R}^{d}$ , one wants to select a set of locations F ⊂ ℝ d $F \subset \mathbb {R}^{d}$ where to open facilities, each at a fixed cost f≥0. For each client j ∈ C $j \in \mathcal {C}$ , one has to choose to either connect it to an open facility ϕ(j)∈F paying the Euclidean distance between j and ϕ(j), or pay a given penalty cost π(j). The facilities must also be connected by a tree T, whose cost is M ℓ(T), where M≥1 and ℓ(T) is the total Euclidean length of edges in T. The multiplication by M reflects the fact that interconnecting two facilities is typically more expensive than connecting a client to a facility. The objective is to find a solution with minimum cost. In this paper, we present a Polynomial-Time Approximation Scheme (PTAS) for the two-dimensional GCFLP. Our algorithm also leads to a PTAS for the two-dimensional Geometric Connected k-medians, when f=0, but only k facilities may be opened. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Theory of Computing Systems Springer Journals

A PTAS for the Geometric Connected Facility Location Problem

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media New York
Computer Science; Theory of Computation
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial