A Proof of Friedman’s Ergosphere Instability for Scalar Waves

A Proof of Friedman’s Ergosphere Instability for Scalar Waves Let $${(\mathcal{M}^{3+1},g)}$$ ( M 3 + 1 , g ) be a real analytic, stationary and asymptotically flat spacetime with a non-empty ergoregion $${\mathscr{E}}$$ E and no future event horizon $${\mathcal{H}^{+}}$$ H + . In Friedman (Commun Math Phys 63(3):243–255, 1978), Friedman observed that, on such spacetimes, there exist solutions $${\varphi}$$ φ to the wave equation $${\square_{g}\varphi=0}$$ □ g φ = 0 such that their local energy does not decay to 0 as time increases. In addition, Friedman provided a heuristic argument that the energy of such solutions actually grows to $${+\infty}$$ + ∞ . In this paper, we provide a rigorous proof of Friedman’s instability. Our setting is, in fact, more general. We consider smooth spacetimes $${(\mathcal{M}^{d+1},g)}$$ ( M d + 1 , g ) , for any $${d\ge2}$$ d ≥ 2 , not necessarily globally real analytic. We impose only a unique continuation condition for the wave equation across the boundary $${\partial\mathscr{E}}$$ ∂ E of $${\mathscr{E}}$$ E on a small neighborhood of a point $${p\in\partial\mathscr{E}}$$ p ∈ ∂ E . This condition always holds if $${(\mathcal{M},g)}$$ ( M , g ) is analytic in that neighborhood of p, but it can also be inferred in the case when $${(\mathcal{M},g)}$$ ( M , g ) possesses a second Killing field $${\Phi}$$ Φ such that the span of $${\Phi}$$ Φ and the stationary Killing field T is timelike on $${\partial\mathscr{E}}$$ ∂ E . We also allow the spacetimes $${(\mathcal{M},g)}$$ ( M , g ) under consideration to possess a (possibly empty) future event horizon $${\mathcal{H}^{+}}$$ H + , such that, however, $${\mathcal{H}^{+}\cap\,\,\mathscr{E}=\emptyset}$$ H + ∩ E = ∅ (excluding, thus, the Kerr exterior family). As an application of our theorem, we infer an instability result for the acoustical wave equation on the hydrodynamic vortex, a phenomenon first investigated numerically by Oliveira et al. in (Phys Rev D 89(12):124008, 2014). Furthermore, as a side benefit of our proof, we provide a derivation, based entirely on the vector field method, of a Carleman-type estimate on the exterior of the ergoregion for a general class of stationary and asymptotically flat spacetimes. Applications of this estimate include a Morawetz-type bound for solutions $${\varphi}$$ φ of $${\square_{g}\varphi=0}$$ □ g φ = 0 with frequency support bounded away from $${{\omega}=0}$$ ω = 0 and $${{\omega}=\pm\infty}$$ ω = ± ∞ . http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Communications in Mathematical Physics Springer Journals

A Proof of Friedman’s Ergosphere Instability for Scalar Waves

Loading next page...
 
/lp/springer_journal/a-proof-of-friedman-s-ergosphere-instability-for-scalar-waves-MESiU8ExXn
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Physics; Theoretical, Mathematical and Computational Physics; Mathematical Physics; Quantum Physics; Complex Systems; Classical and Quantum Gravitation, Relativity Theory
ISSN
0010-3616
eISSN
1432-0916
D.O.I.
10.1007/s00220-017-3010-y
Publisher site
See Article on Publisher Site

Abstract

Let $${(\mathcal{M}^{3+1},g)}$$ ( M 3 + 1 , g ) be a real analytic, stationary and asymptotically flat spacetime with a non-empty ergoregion $${\mathscr{E}}$$ E and no future event horizon $${\mathcal{H}^{+}}$$ H + . In Friedman (Commun Math Phys 63(3):243–255, 1978), Friedman observed that, on such spacetimes, there exist solutions $${\varphi}$$ φ to the wave equation $${\square_{g}\varphi=0}$$ □ g φ = 0 such that their local energy does not decay to 0 as time increases. In addition, Friedman provided a heuristic argument that the energy of such solutions actually grows to $${+\infty}$$ + ∞ . In this paper, we provide a rigorous proof of Friedman’s instability. Our setting is, in fact, more general. We consider smooth spacetimes $${(\mathcal{M}^{d+1},g)}$$ ( M d + 1 , g ) , for any $${d\ge2}$$ d ≥ 2 , not necessarily globally real analytic. We impose only a unique continuation condition for the wave equation across the boundary $${\partial\mathscr{E}}$$ ∂ E of $${\mathscr{E}}$$ E on a small neighborhood of a point $${p\in\partial\mathscr{E}}$$ p ∈ ∂ E . This condition always holds if $${(\mathcal{M},g)}$$ ( M , g ) is analytic in that neighborhood of p, but it can also be inferred in the case when $${(\mathcal{M},g)}$$ ( M , g ) possesses a second Killing field $${\Phi}$$ Φ such that the span of $${\Phi}$$ Φ and the stationary Killing field T is timelike on $${\partial\mathscr{E}}$$ ∂ E . We also allow the spacetimes $${(\mathcal{M},g)}$$ ( M , g ) under consideration to possess a (possibly empty) future event horizon $${\mathcal{H}^{+}}$$ H + , such that, however, $${\mathcal{H}^{+}\cap\,\,\mathscr{E}=\emptyset}$$ H + ∩ E = ∅ (excluding, thus, the Kerr exterior family). As an application of our theorem, we infer an instability result for the acoustical wave equation on the hydrodynamic vortex, a phenomenon first investigated numerically by Oliveira et al. in (Phys Rev D 89(12):124008, 2014). Furthermore, as a side benefit of our proof, we provide a derivation, based entirely on the vector field method, of a Carleman-type estimate on the exterior of the ergoregion for a general class of stationary and asymptotically flat spacetimes. Applications of this estimate include a Morawetz-type bound for solutions $${\varphi}$$ φ of $${\square_{g}\varphi=0}$$ □ g φ = 0 with frequency support bounded away from $${{\omega}=0}$$ ω = 0 and $${{\omega}=\pm\infty}$$ ω = ± ∞ .

Journal

Communications in Mathematical PhysicsSpringer Journals

Published: Nov 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off