A promoter directing high level expression in pistils of transgenic plants

A promoter directing high level expression in pistils of transgenic plants The promoter of the potato (Solanum tuberosum L.) SK2 gene, encoding a pistil-specific basic endochitinase, was cloned. Various fragments of the SK2-promoter, from 1 kb down to 0.23 kb in length, were fused to the GUS reporter gene. Chimaeric SK2 promoter-GUS fusion constructs were transformed into potato by Agrobacterium tumefaciens-mediated transformation. The SK2-GUS transgenic potato plants exhibited a highly specific GUS activity in the pistil. Expression in the pistil was shown to be developmentally regulated. In addition to the GUS activity in pistils, transgenic plants also showed a much weaker ectopic expression in anthers. In other tissues no systematic expression was detectable. All SK2 promoter fragments analysed conferred pistil-specific expression without significant qualitative or quantitative differences, demonstrating that the regulatory elements mediating this expression pattern are located within a 230 bp SK2 promoter fragment. The SK2 promoter may be used to engineer high levels of expression in pistils of transgenic plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A promoter directing high level expression in pistils of transgenic plants

Loading next page...
 
/lp/springer_journal/a-promoter-directing-high-level-expression-in-pistils-of-transgenic-y2BiG3OJjy
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005898624425
Publisher site
See Article on Publisher Site

Abstract

The promoter of the potato (Solanum tuberosum L.) SK2 gene, encoding a pistil-specific basic endochitinase, was cloned. Various fragments of the SK2-promoter, from 1 kb down to 0.23 kb in length, were fused to the GUS reporter gene. Chimaeric SK2 promoter-GUS fusion constructs were transformed into potato by Agrobacterium tumefaciens-mediated transformation. The SK2-GUS transgenic potato plants exhibited a highly specific GUS activity in the pistil. Expression in the pistil was shown to be developmentally regulated. In addition to the GUS activity in pistils, transgenic plants also showed a much weaker ectopic expression in anthers. In other tissues no systematic expression was detectable. All SK2 promoter fragments analysed conferred pistil-specific expression without significant qualitative or quantitative differences, demonstrating that the regulatory elements mediating this expression pattern are located within a 230 bp SK2 promoter fragment. The SK2 promoter may be used to engineer high levels of expression in pistils of transgenic plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off