A privacy-preserving technique for Euclidean distance-based mining algorithms using Fourier-related transforms

A privacy-preserving technique for Euclidean distance-based mining algorithms using... Privacy preserving data mining has become increasingly popular because it allows sharing of privacy-sensitive data for analysis purposes. However, existing techniques such as random perturbation do not fare well for simple yet widely used and efficient Euclidean distance-based mining algorithms. Although original data distributions can be pretty accurately reconstructed from the perturbed data, distances between individual data points are not preserved, leading to poor accuracy for the distance-based mining methods. Besides, they do not generally focus on data reduction. Other studies on secure multi-party computation often concentrate on techniques useful to very specific mining algorithms and scenarios such that they require modification of the mining algorithms and are often difficult to generalize to other mining algorithms or scenarios. This paper proposes a novel generalized approach using the well-known energy compaction power of Fourier-related transforms to hide sensitive data values and to approximately preserve Euclidean distances in centralized and distributed scenarios to a great degree of accuracy. Three algorithms to select the most important transform coefficients are presented, one for a centralized database case, the second one for a horizontally partitioned, and the third one for a vertically partitioned database case. Experimental results demonstrate the effectiveness of the proposed approach. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

A privacy-preserving technique for Euclidean distance-based mining algorithms using Fourier-related transforms

Loading next page...
 
/lp/springer_journal/a-privacy-preserving-technique-for-euclidean-distance-based-mining-hcgXjjUYo7
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-006-0010-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial