A preference-based multi-objective evolutionary algorithm using preference selection radius

A preference-based multi-objective evolutionary algorithm using preference selection radius In traditional preference-based multi-objective optimization, the reference points in different regions often impact the performance of the algorithms so that the region of interest (ROI) cannot easily be obtained by the decision maker (DM). In dealing with many-objective optimization problems, the objective space is filled with non-dominated solutions in terms of the Pareto dominance relationship, since the dominance relationship cannot differentiate the mutual relationship between the solutions. To solve the above problems, this paper proposes a new selection mechanism with two main steps. First, we construct a preference radius to divide the whole population into two distinct parts: a dispreferred solution set and a preferred solution set. Second, the algorithm selects the optimal solutions in the preferred solution set by means of the Pareto dominance relationship. If the number of the obtained solutions does not satisfy the quantity’s upper limit, it selects those dispreferred solutions which have smaller distances to the reference direction until the number matches the size of the population. Experimental results show that the algorithm applying the mechanism is able to adapt to different reference points in varying regions in objective space. Moreover, it assists the DM in obtaining different sizes of ROI by adjusting the length of the radius of ROI. In dealing with many-objective problems, the mechanism can dramatically contribute to the convergence of an algorithm proposed in this paper, in comparison with other two state-of-the-art algorithms: g-dominance and r-dominance. Thus, this paper provides a new way to deal with user preference-based multi-objective optimization problems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Soft Computing Springer Journals

A preference-based multi-objective evolutionary algorithm using preference selection radius

Loading next page...
 
/lp/springer_journal/a-preference-based-multi-objective-evolutionary-algorithm-using-NIzQIMYlfu
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Mathematical Logic and Foundations; Control, Robotics, Mechatronics
ISSN
1432-7643
eISSN
1433-7479
D.O.I.
10.1007/s00500-016-2099-9
Publisher site
See Article on Publisher Site

Abstract

In traditional preference-based multi-objective optimization, the reference points in different regions often impact the performance of the algorithms so that the region of interest (ROI) cannot easily be obtained by the decision maker (DM). In dealing with many-objective optimization problems, the objective space is filled with non-dominated solutions in terms of the Pareto dominance relationship, since the dominance relationship cannot differentiate the mutual relationship between the solutions. To solve the above problems, this paper proposes a new selection mechanism with two main steps. First, we construct a preference radius to divide the whole population into two distinct parts: a dispreferred solution set and a preferred solution set. Second, the algorithm selects the optimal solutions in the preferred solution set by means of the Pareto dominance relationship. If the number of the obtained solutions does not satisfy the quantity’s upper limit, it selects those dispreferred solutions which have smaller distances to the reference direction until the number matches the size of the population. Experimental results show that the algorithm applying the mechanism is able to adapt to different reference points in varying regions in objective space. Moreover, it assists the DM in obtaining different sizes of ROI by adjusting the length of the radius of ROI. In dealing with many-objective problems, the mechanism can dramatically contribute to the convergence of an algorithm proposed in this paper, in comparison with other two state-of-the-art algorithms: g-dominance and r-dominance. Thus, this paper provides a new way to deal with user preference-based multi-objective optimization problems.

Journal

Soft ComputingSpringer Journals

Published: Mar 10, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off