A Predictive Model of the Extent of Listerial Contamination Within Damaged Silage Bales

A Predictive Model of the Extent of Listerial Contamination Within Damaged Silage Bales A computer simulation model which describes the spatial and temporal variation in the extent of listerial contamination within a damaged silage bale is presented. The silage bale is assumed to be split into a number of distinct sites and these sites are represented by a two dimensional lattice structure. Each site is classified in relation to its listerial composition. This classification results in three states which are dormant, active and unpopulated. Sites change state as a result of the movement of oxygen through the bale. This movement is initiated when a hole is punched in the plastic covering of the bale. The model is stochastic in nature and at any time following damage, the proportion of the bale which is contaminated is calculated. Furthermore, the spatial distribution of contaminated sites is predicted. The models are a first attempt at introducing structure into the selection process for feeding silage. We highlight areas of future research which will be invaluable for validation and practical use of the model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantitative Microbiology Springer Journals

A Predictive Model of the Extent of Listerial Contamination Within Damaged Silage Bales

Loading next page...
 
/lp/springer_journal/a-predictive-model-of-the-extent-of-listerial-contamination-within-r42ahWESef
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Environment; Environmental Engineering/Biotechnology
ISSN
1388-3593
eISSN
1572-9923
D.O.I.
10.1023/A:1013973127511
Publisher site
See Article on Publisher Site

Abstract

A computer simulation model which describes the spatial and temporal variation in the extent of listerial contamination within a damaged silage bale is presented. The silage bale is assumed to be split into a number of distinct sites and these sites are represented by a two dimensional lattice structure. Each site is classified in relation to its listerial composition. This classification results in three states which are dormant, active and unpopulated. Sites change state as a result of the movement of oxygen through the bale. This movement is initiated when a hole is punched in the plastic covering of the bale. The model is stochastic in nature and at any time following damage, the proportion of the bale which is contaminated is calculated. Furthermore, the spatial distribution of contaminated sites is predicted. The models are a first attempt at introducing structure into the selection process for feeding silage. We highlight areas of future research which will be invaluable for validation and practical use of the model.

Journal

Quantitative MicrobiologySpringer Journals

Published: Oct 8, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off