A posteriori uncertainty quantification of PIV-based pressure data

A posteriori uncertainty quantification of PIV-based pressure data A methodology for a posteriori uncertainty quantification of pressure data retrieved from particle image velocimetry (PIV) is proposed. It relies upon the Bayesian framework, where the posterior distribution (probability distribution of the true velocity, given the PIV measurements) is obtained from the prior distribution (prior knowledge of properties of the velocity field, e.g., divergence-free) and the statistical model of PIV measurement uncertainty. Once the posterior covariance matrix of the velocity is known, it is propagated through the discretized Poisson equation for pressure. Numerical assessment of the proposed method on a steady Lamb–Oseen vortex shows excellent agreement with Monte Carlo simulations, while linear uncertainty propagation underestimates the uncertainty in the pressure by up to 30 %. The method is finally applied to an experimental test case of a turbulent boundary layer in air, obtained using time-resolved tomographic PIV. Simultaneously with the PIV measurements, microphone measurements were carried out at the wall. The pressure reconstructed from the tomographic PIV data is compared to the microphone measurements. Realizing that the uncertainty of the latter is significantly smaller than the PIV-based pressure, this allows us to obtain an estimate for the true error of the former. The comparison between true error and estimated uncertainty demonstrates the accuracy of the uncertainty estimates on the pressure. In addition, enforcing the divergence-free constraint is found to result in a significantly more accurate reconstructed pressure field. The estimated uncertainty confirms this result. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

A posteriori uncertainty quantification of PIV-based pressure data

Loading next page...
 
/lp/springer_journal/a-posteriori-uncertainty-quantification-of-piv-based-pressure-data-CXvCMPXAKk
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by The Author(s)
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-016-2159-z
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial