A portable soil nitrogen detector based on NIRS

A portable soil nitrogen detector based on NIRS As one of the most important soil nutrient components, soil total nitrogen (TN) content needs to be measured in precision agriculture. A portable soil TN detector based on the 89S52 microcontroller was developed, and a Back Propagation Neural Network (BP-NN) estimation model embedded in the detector was established using near-infrared reflectance spectroscopy with absorbance data at 1550, 1300, 1200, 1100, 1050, and 940 nm wavelengths. The detector consisted of two parts, an optical unit and a control unit. The optical unit included six near-infrared lamp-houses, a shared lamp-house drive circuit, a shared incidence and reflectance Y-type optical fiber, a probe, and a photoelectric sensor. The control unit included an amplifier circuit, a filter circuit, an analog-to-digital converter circuit, an LCD display, and a U-disk storage component. All six absorbance data as inputs were used to calculate soil TN content by means of the estimation model. Finally, the calculated soil TN content was displayed on the LCD display and at the same time stored in the U-disk. A calibration experiment was conducted. The soil TN content correlation coefficient (R 2) of the BP-NN estimation model was 0.88, and the validation R 2 was 0.75. This result indicated that the developed detector had a stable performance and a high precision. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

A portable soil nitrogen detector based on NIRS

Loading next page...
Springer US
Copyright © 2012 by Springer Science+Business Media New York
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


  • On-the-go soil sensors for precision agriculture
    Adamchuk, VI; Hummel, JW; Morgan, MT; Upadhyaya, SK
  • Direct measurement of soil chemical properties on-the-go using ion-selective electrodes
    Adamchuk, VI; Lund, ED; Sethuramasamyraja, B; Morgan, MT; Dobermann, A; Marx, DB
  • Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy
    Christy, CD

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial