A polynomial relational class of binary CSP

A polynomial relational class of binary CSP Finding a solution to a constraint satisfaction problem (CSP) is known to be an NP-hard task. Considerable effort has been spent on identifying tractable classes of CSP, in other words, classes of constraint satisfaction problems for which there are polynomial time recognition and resolution algorithms. In this article, we present a relational tractable class of binary CSP. Our key contribution is a new ternary operation that we name mjx. We first characterize mjx-closed relations which leads to an optimal algorithm to recognize such relations. To reduce space and time complexity, we define a new storage technique for these relations which reduces the complexity of establishing a form of strong directional path consistency, the consistency level that solves all instances of the proposed class (and, indeed, of all relational classes closed under a majority polymorphism). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Mathematics and Artificial Intelligence Springer Journals

A polynomial relational class of binary CSP

Loading next page...
 
/lp/springer_journal/a-polynomial-relational-class-of-binary-csp-p7u69A2sZ6
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Mathematics, general; Computer Science, general; Complex Systems
ISSN
1012-2443
eISSN
1573-7470
D.O.I.
10.1007/s10472-017-9566-6
Publisher site
See Article on Publisher Site

Abstract

Finding a solution to a constraint satisfaction problem (CSP) is known to be an NP-hard task. Considerable effort has been spent on identifying tractable classes of CSP, in other words, classes of constraint satisfaction problems for which there are polynomial time recognition and resolution algorithms. In this article, we present a relational tractable class of binary CSP. Our key contribution is a new ternary operation that we name mjx. We first characterize mjx-closed relations which leads to an optimal algorithm to recognize such relations. To reduce space and time complexity, we define a new storage technique for these relations which reduces the complexity of establishing a form of strong directional path consistency, the consistency level that solves all instances of the proposed class (and, indeed, of all relational classes closed under a majority polymorphism).

Journal

Annals of Mathematics and Artificial IntelligenceSpringer Journals

Published: Oct 26, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off