A pneumatic droplet-on-demand generator

A pneumatic droplet-on-demand generator The design of a pneumatic droplet generator to produce small (~0.2 mm diameter) water droplets on demand is described. It consists of a cylindrical, liquid-filled chamber with a small nozzle set into its bottom surface, connected to a gas cylinder through a solenoid valve. Rapidly opening and closing the valve sends a pressure pulse to the liquid, ejecting a single droplet through the nozzle. Gas in the chamber escapes through a vent hole so that the pressure drops rapidly and more droplets do not emerge. We photographed droplets as they emerged from the nozzle, and recorded pressure fluctuations in the chamber. We determined the duration of the pressure pulse required to generate a single drop; longer pulses produced satellite drops. The length of the water jet when its tip detached and the diameter of the droplet that formed could be predicted using results from linear stability analysis. The peak pressure in the cavity could be increased by raising the supply pressure, increasing the width of the pressure pulse, or by reducing the size of the pressure relief vent. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

A pneumatic droplet-on-demand generator

Loading next page...
 
/lp/springer_journal/a-pneumatic-droplet-on-demand-generator-iWvfW6yvDh
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-003-0629-6
Publisher site
See Article on Publisher Site

Abstract

The design of a pneumatic droplet generator to produce small (~0.2 mm diameter) water droplets on demand is described. It consists of a cylindrical, liquid-filled chamber with a small nozzle set into its bottom surface, connected to a gas cylinder through a solenoid valve. Rapidly opening and closing the valve sends a pressure pulse to the liquid, ejecting a single droplet through the nozzle. Gas in the chamber escapes through a vent hole so that the pressure drops rapidly and more droplets do not emerge. We photographed droplets as they emerged from the nozzle, and recorded pressure fluctuations in the chamber. We determined the duration of the pressure pulse required to generate a single drop; longer pulses produced satellite drops. The length of the water jet when its tip detached and the diameter of the droplet that formed could be predicted using results from linear stability analysis. The peak pressure in the cavity could be increased by raising the supply pressure, increasing the width of the pressure pulse, or by reducing the size of the pressure relief vent.

Journal

Experiments in FluidsSpringer Journals

Published: May 14, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off