A plant mitochondrial phospholipid hydroperoxide glutathione peroxidase: its precise localization and higher enzymatic activity

A plant mitochondrial phospholipid hydroperoxide glutathione peroxidase: its precise localization... A novel cDNA of phospholipid hydroperoxide glutathione peroxidase (PHGPx), which encodes a functional protein capable of complementing the yeast PHGHX-deletion mutant, was recently discovered in radish (Raphanus sativus) and designated as RsPHGPx [Yang X-D, Li W-J, Liu J-Y (2005) Biochim Biophys Acta 1728:199–205]. Sequence alignment suggested that RsPHGPx contains a targeting peptide required for transport to mitochondria, but the experimental evidence for the exact intracellular distribution of RsPHGPx remains to be elucidated. To uncover the cellular localization of plant PHGPx, we first investigated RsPHGPx’s intracellular distribution. Western blot analysis of subcellular fractions using the RsPHGPx antiserum clearly indicated the distribution of RsPHGPx in the radish mitochondrial fraction. Furthermore, a construct expressing the RsPHGPx precursor tagged with green fluorescent protein was introduced into tobacco and yeast cells, and the fusion protein was transported into both mitochondria, indicating that RsPHGPx was indeed localized in mitochondria. To explore the biochemical functions of this enzyme, we tested the enzymatic activity of the recombinant RsPHGPx protein. It displayed GSH-dependent peroxidase activity and exhibited the largest affinity to and the highest catalytic efficiency on phosphatidylcholine hydroperoxide, suggesting that phospholipid hydroperoxide is probably the optimum substrate for RsPHGPx. Furthermore, RsPHGPx showed a much higher V max value, by two orders of magnitude, than those of all other known plant PHGPxs. Taken together, these results showed evidence for the first time of mitochondrial localization and higher activity of PHGPx in plants and provided a framework for continued studies on the physiological functions of RsPHGPx. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A plant mitochondrial phospholipid hydroperoxide glutathione peroxidase: its precise localization and higher enzymatic activity

Loading next page...
 
/lp/springer_journal/a-plant-mitochondrial-phospholipid-hydroperoxide-glutathione-iXVsupGhBz
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2006 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-006-9068-0
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial