A photochemical investigation into operational degradation of arylamines in organic light-emitting diodes

A photochemical investigation into operational degradation of arylamines in organic... In this study, we investigated the operational degradation of 4,4′-bis(N-carbazolyl)biphenyl (CBP), an arylamine commonly used as phosphorescent host or hole transport material in organic light-emitting diodes (OLEDs), which have been subject to a recent surge in demand for use in the optical display market. In view of the important roles of organic components in the stability and lifetime of OLEDs, we initiated an investigation of the operational degradation of CBP in OLEDs in an effort to elucidate the degradation mechanism. Our experimental approach to this task is by performing photochemistry on CBP in solution, thereby avoiding actual operation of CBP-based OLEDs. Prior to the experiments, we calculated the C–N homolytic bond dissociation energy in CBP, and synthesized two CBP derivatives based on molecular engineering considerations. Furthermore, we performed TiO2 photocatalytic decomposition of arylamines as a feasibility test for another operational degradation pathway. Based on both the photochemical and photocatalytic experiments, multiple operational degradation pathways of arylamines emerge. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

A photochemical investigation into operational degradation of arylamines in organic light-emitting diodes

Loading next page...
 
/lp/springer_journal/a-photochemical-investigation-into-operational-degradation-of-7u9Fsu0080
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0613-y
Publisher site
See Article on Publisher Site

Abstract

In this study, we investigated the operational degradation of 4,4′-bis(N-carbazolyl)biphenyl (CBP), an arylamine commonly used as phosphorescent host or hole transport material in organic light-emitting diodes (OLEDs), which have been subject to a recent surge in demand for use in the optical display market. In view of the important roles of organic components in the stability and lifetime of OLEDs, we initiated an investigation of the operational degradation of CBP in OLEDs in an effort to elucidate the degradation mechanism. Our experimental approach to this task is by performing photochemistry on CBP in solution, thereby avoiding actual operation of CBP-based OLEDs. Prior to the experiments, we calculated the C–N homolytic bond dissociation energy in CBP, and synthesized two CBP derivatives based on molecular engineering considerations. Furthermore, we performed TiO2 photocatalytic decomposition of arylamines as a feasibility test for another operational degradation pathway. Based on both the photochemical and photocatalytic experiments, multiple operational degradation pathways of arylamines emerge.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jun 16, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off