A photochemical investigation into operational degradation of arylamines in organic light-emitting diodes

A photochemical investigation into operational degradation of arylamines in organic... In this study, we investigated the operational degradation of 4,4′-bis(N-carbazolyl)biphenyl (CBP), an arylamine commonly used as phosphorescent host or hole transport material in organic light-emitting diodes (OLEDs), which have been subject to a recent surge in demand for use in the optical display market. In view of the important roles of organic components in the stability and lifetime of OLEDs, we initiated an investigation of the operational degradation of CBP in OLEDs in an effort to elucidate the degradation mechanism. Our experimental approach to this task is by performing photochemistry on CBP in solution, thereby avoiding actual operation of CBP-based OLEDs. Prior to the experiments, we calculated the C–N homolytic bond dissociation energy in CBP, and synthesized two CBP derivatives based on molecular engineering considerations. Furthermore, we performed TiO2 photocatalytic decomposition of arylamines as a feasibility test for another operational degradation pathway. Based on both the photochemical and photocatalytic experiments, multiple operational degradation pathways of arylamines emerge. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

A photochemical investigation into operational degradation of arylamines in organic light-emitting diodes

Loading next page...
 
/lp/springer_journal/a-photochemical-investigation-into-operational-degradation-of-7u9Fsu0080
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0613-y
Publisher site
See Article on Publisher Site

Abstract

In this study, we investigated the operational degradation of 4,4′-bis(N-carbazolyl)biphenyl (CBP), an arylamine commonly used as phosphorescent host or hole transport material in organic light-emitting diodes (OLEDs), which have been subject to a recent surge in demand for use in the optical display market. In view of the important roles of organic components in the stability and lifetime of OLEDs, we initiated an investigation of the operational degradation of CBP in OLEDs in an effort to elucidate the degradation mechanism. Our experimental approach to this task is by performing photochemistry on CBP in solution, thereby avoiding actual operation of CBP-based OLEDs. Prior to the experiments, we calculated the C–N homolytic bond dissociation energy in CBP, and synthesized two CBP derivatives based on molecular engineering considerations. Furthermore, we performed TiO2 photocatalytic decomposition of arylamines as a feasibility test for another operational degradation pathway. Based on both the photochemical and photocatalytic experiments, multiple operational degradation pathways of arylamines emerge.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jun 16, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off