A phenotype-driven ENU mutagenesis screen for the identification of dominant mutations involved in alcohol consumption

A phenotype-driven ENU mutagenesis screen for the identification of dominant mutations involved... The aim of this study was the application of a phenotype-driven N-ethyl-N-nitrosourea (ENU) mutagenesis screen in mice for the identification of dominant mutations involved in the regulation and modulation of alcohol-drinking behavior. The chemical mutagen ENU was utilized in the generation of 131 male ENU-mutant C57BL/6J mice (G0). These ENU-treated mice were paired with wild-type C57BL/6J mice to generate G1 and subsequent generations. In total, 3327 mice were generated. Starting with G1, mice were screened for voluntary oral self-administration of 10% (v/v) alcohol vs. water in a two-bottle paradigm. From these mice, after a total period of 5 weeks of drinking, 43 mutants fulfilled the criteria of an “alcohol phenotype,” that is, high or low ethanol intake. They were then selected for breeding and tested in a “confirmation cross” (G2–G4) for inheritance. Although we did not establish stable high or low drinking lines, several results were obtained in the context of alcohol consumption. First, female mice drank more alcohol than their male counterparts. Second, the former demonstrated greater infertility. Third, all animals displayed relatively stable alcohol intake, although significantly different in two different laboratories. Finally, seasonal and monthly variability was observed, with the highest alcohol consumption occurring in spring and the lowest in autumn. In conclusion, it seems difficult to identify dominant mutations involved in the modulation or regulation of voluntary alcohol consumption via a phenotype-driven ENU mutagenesis screen. In accordance with the findings from knockout studies, we suggest that mainly recessive mutations contribute to an alcohol-drinking or alcohol-avoiding phenotype. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

A phenotype-driven ENU mutagenesis screen for the identification of dominant mutations involved in alcohol consumption

Loading next page...
 
/lp/springer_journal/a-phenotype-driven-enu-mutagenesis-screen-for-the-identification-of-tSy5ZAQTUc
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Life Sciences; Zoology ; Anatomy ; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-007-9087-4
Publisher site
See Article on Publisher Site

Abstract

The aim of this study was the application of a phenotype-driven N-ethyl-N-nitrosourea (ENU) mutagenesis screen in mice for the identification of dominant mutations involved in the regulation and modulation of alcohol-drinking behavior. The chemical mutagen ENU was utilized in the generation of 131 male ENU-mutant C57BL/6J mice (G0). These ENU-treated mice were paired with wild-type C57BL/6J mice to generate G1 and subsequent generations. In total, 3327 mice were generated. Starting with G1, mice were screened for voluntary oral self-administration of 10% (v/v) alcohol vs. water in a two-bottle paradigm. From these mice, after a total period of 5 weeks of drinking, 43 mutants fulfilled the criteria of an “alcohol phenotype,” that is, high or low ethanol intake. They were then selected for breeding and tested in a “confirmation cross” (G2–G4) for inheritance. Although we did not establish stable high or low drinking lines, several results were obtained in the context of alcohol consumption. First, female mice drank more alcohol than their male counterparts. Second, the former demonstrated greater infertility. Third, all animals displayed relatively stable alcohol intake, although significantly different in two different laboratories. Finally, seasonal and monthly variability was observed, with the highest alcohol consumption occurring in spring and the lowest in autumn. In conclusion, it seems difficult to identify dominant mutations involved in the modulation or regulation of voluntary alcohol consumption via a phenotype-driven ENU mutagenesis screen. In accordance with the findings from knockout studies, we suggest that mainly recessive mutations contribute to an alcohol-drinking or alcohol-avoiding phenotype.

Journal

Mammalian GenomeSpringer Journals

Published: Jan 23, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off