A phase-field approach to conchoidal fracture

A phase-field approach to conchoidal fracture Crack propagation involves the creation of new internal surfaces of a priori unknown paths. A first challenge for modeling and simulation of crack propagation is to identify the location of the crack initiation accurately, a second challenge is to follow the crack paths accurately. Phase-field models address both challenges in an elegant way, as they are able to represent arbitrary crack paths by means of a damage parameter. Moreover, they allow for the representation of complex crack patterns without changing the computational mesh via the damage parameter—which however comes at the cost of larger spatial systems to be solved. Phase-field methods have already been proven to predict complex fracture patterns in two and three dimensional numerical simulations for brittle fracture. In this paper, we consider phase-field models and their numerical simulation for conchoidal fracture. The main characteristic of conchoidal fracture is that the point of crack initiation is typically located inside of the body. We present phase-field approaches for conchoidal fracture for both, the linear-elastic case as well as the case of finite deformations. We moreover present and discuss efficient methods for the numerical simulation of the arising large scale non-linear systems. Here, we propose to use multigrid methods as solution technique, which leads to a solution method of optimal complexity. We demonstrate the accuracy and the robustness of our approach for two and three dimensional examples related to mussel shell like shape and faceted surfaces of fracture and show that our approach can accurately capture the specific details of cracked surfaces, such as the rippled breakages of conchoidal fracture. Moreover, we show that using our approach the arising systems can also be solved efficiently in parallel with excellent scaling behavior. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Meccanica Springer Journals

A phase-field approach to conchoidal fracture

Loading next page...
 
/lp/springer_journal/a-phase-field-approach-to-conchoidal-fracture-pR9Yxze0Ik
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Physics; Classical Mechanics; Civil Engineering; Automotive Engineering; Mechanical Engineering
ISSN
0025-6455
eISSN
1572-9648
D.O.I.
10.1007/s11012-017-0740-z
Publisher site
See Article on Publisher Site

Abstract

Crack propagation involves the creation of new internal surfaces of a priori unknown paths. A first challenge for modeling and simulation of crack propagation is to identify the location of the crack initiation accurately, a second challenge is to follow the crack paths accurately. Phase-field models address both challenges in an elegant way, as they are able to represent arbitrary crack paths by means of a damage parameter. Moreover, they allow for the representation of complex crack patterns without changing the computational mesh via the damage parameter—which however comes at the cost of larger spatial systems to be solved. Phase-field methods have already been proven to predict complex fracture patterns in two and three dimensional numerical simulations for brittle fracture. In this paper, we consider phase-field models and their numerical simulation for conchoidal fracture. The main characteristic of conchoidal fracture is that the point of crack initiation is typically located inside of the body. We present phase-field approaches for conchoidal fracture for both, the linear-elastic case as well as the case of finite deformations. We moreover present and discuss efficient methods for the numerical simulation of the arising large scale non-linear systems. Here, we propose to use multigrid methods as solution technique, which leads to a solution method of optimal complexity. We demonstrate the accuracy and the robustness of our approach for two and three dimensional examples related to mussel shell like shape and faceted surfaces of fracture and show that our approach can accurately capture the specific details of cracked surfaces, such as the rippled breakages of conchoidal fracture. Moreover, we show that using our approach the arising systems can also be solved efficiently in parallel with excellent scaling behavior.

Journal

MeccanicaSpringer Journals

Published: Aug 28, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off