A path-disjoint approach for blocking probability analysis in hybrid dynamic wavelength routed WDM grooming networks

A path-disjoint approach for blocking probability analysis in hybrid dynamic wavelength routed... The present article addresses a novel approach to enhance the overall performance of a WDM optical network. Centralized and distributed approaches for dynamic lightpath establishment are well studied in the literature. Both the approaches have some drawbacks. In this article a hybrid approach is proposed to accept the advantages and discard the disadvantages of both the approaches. With the proposed hybrid approach, a WDM optical network is divided into clusters of nodes. Within a cluster centralized mechanism is applicable whereas connection requests between the node pairs from different clusters follow the distributed mechanism. Also, in this article an analytical model is proposed to compute the expected blocking probability of the proposed hybrid network. First, blocking probabilities for the centralized and distributed approaches are computed and then it is extended for the hybrid approach. The distinguished feature of the proposed analytical model is that it efficiently utilizes the path information of the calls to determine the overall blocking probability of a WDM optical network. It extracts the necessary parameters of a network by simulation and utilize the information to analytically calculate the blocking probability of the network. The NSFNET T1 backbone network is used for the simulation study. To justify the analytical model, the simulation results are compared with that of the analytical model. The simulation results establish the effectiveness of the proposed hybrid approach over the distributed approach in merits of both the call setup time and blocking probability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

A path-disjoint approach for blocking probability analysis in hybrid dynamic wavelength routed WDM grooming networks

Loading next page...
 
/lp/springer_journal/a-path-disjoint-approach-for-blocking-probability-analysis-in-hybrid-XnK1RTCWYC
Publisher
Springer US
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-009-0199-5
Publisher site
See Article on Publisher Site

Abstract

The present article addresses a novel approach to enhance the overall performance of a WDM optical network. Centralized and distributed approaches for dynamic lightpath establishment are well studied in the literature. Both the approaches have some drawbacks. In this article a hybrid approach is proposed to accept the advantages and discard the disadvantages of both the approaches. With the proposed hybrid approach, a WDM optical network is divided into clusters of nodes. Within a cluster centralized mechanism is applicable whereas connection requests between the node pairs from different clusters follow the distributed mechanism. Also, in this article an analytical model is proposed to compute the expected blocking probability of the proposed hybrid network. First, blocking probabilities for the centralized and distributed approaches are computed and then it is extended for the hybrid approach. The distinguished feature of the proposed analytical model is that it efficiently utilizes the path information of the calls to determine the overall blocking probability of a WDM optical network. It extracts the necessary parameters of a network by simulation and utilize the information to analytically calculate the blocking probability of the network. The NSFNET T1 backbone network is used for the simulation study. To justify the analytical model, the simulation results are compared with that of the analytical model. The simulation results establish the effectiveness of the proposed hybrid approach over the distributed approach in merits of both the call setup time and blocking probability.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Mar 20, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off