Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A parallel online trajectory compression approach for supporting big data workflow

A parallel online trajectory compression approach for supporting big data workflow Nowadays with booming of sensor technology, location big data exhibit as high complexity, massive volume, real-time and stream-based characteristic. The current workflow systems are facing the challenge hardly to efficiently process the real-time location big data like trajectory stream. Online compression method is an available solution to preprocess these trajectory data in order to speed up the processing of big data workflow. However, the current online compression methods are in a serial execution that are hard to fast compress massive real-time original trajectory data. Aiming at this problem, we employ the multi-core and many-core approaches to accelerate a representative online trajectory compression method SQUISH-E. First a parallel version of SQUISH-E is proposed. PSQUISH-E used a data parallel scheme based on overlap technique and OpenMP to achieve the implementation over multiple-core CPUs. For further reducing compression time, we combine iteration method and GPU Hyper-Q feature to develop GPU-aided PSQUISH-E algorithm called as G-PSQUISH-E. The experimental results showed that (1) the data parallel scheme based on overlap can reach a similar SED error as the SQUISH-E (2) the proposed PSQUISH-E running on multi-core CPU achieved 3.8 times acceleration effect, and (3) G-PSQUISH-E further accelerated the effect of about 3 times compared with PSQUISH-E. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computing Springer Journals

A parallel online trajectory compression approach for supporting big data workflow

Computing , Volume 100 (1) – Jun 20, 2017

Loading next page...
1
 
/lp/springer_journal/a-parallel-online-trajectory-compression-approach-for-supporting-big-CWHgSja6p7

References (23)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Austria
Subject
Computer Science; Computer Science, general; Information Systems Applications (incl.Internet); Computer Communication Networks; Software Engineering; Artificial Intelligence (incl. Robotics); Computer Appl. in Administrative Data Processing
ISSN
0010-485X
eISSN
1436-5057
DOI
10.1007/s00607-017-0563-8
Publisher site
See Article on Publisher Site

Abstract

Nowadays with booming of sensor technology, location big data exhibit as high complexity, massive volume, real-time and stream-based characteristic. The current workflow systems are facing the challenge hardly to efficiently process the real-time location big data like trajectory stream. Online compression method is an available solution to preprocess these trajectory data in order to speed up the processing of big data workflow. However, the current online compression methods are in a serial execution that are hard to fast compress massive real-time original trajectory data. Aiming at this problem, we employ the multi-core and many-core approaches to accelerate a representative online trajectory compression method SQUISH-E. First a parallel version of SQUISH-E is proposed. PSQUISH-E used a data parallel scheme based on overlap technique and OpenMP to achieve the implementation over multiple-core CPUs. For further reducing compression time, we combine iteration method and GPU Hyper-Q feature to develop GPU-aided PSQUISH-E algorithm called as G-PSQUISH-E. The experimental results showed that (1) the data parallel scheme based on overlap can reach a similar SED error as the SQUISH-E (2) the proposed PSQUISH-E running on multi-core CPU achieved 3.8 times acceleration effect, and (3) G-PSQUISH-E further accelerated the effect of about 3 times compared with PSQUISH-E.

Journal

ComputingSpringer Journals

Published: Jun 20, 2017

There are no references for this article.