A numerical analysis of transpiration cooling as an air cooling mechanism

A numerical analysis of transpiration cooling as an air cooling mechanism The present study is focused on investigation of heat transfer from a porous plate by cooling of air with transpiration cooling. Effects of Reynolds number of hot gas stream, inlet temperature of air and mass flow rate of water on local wall temperature and cooling effectiveness of porous flat plate and efficiency of the system inside a rectangular channel with air as a hot gas stream and water as a coolant were investigated numerically. Increasing Reynolds number causes an increase on surface temperature and a decrease on cooling effectiveness of porous plate and efficiency of the system. Increasing of air inlet temperature does not cause a significant increase on cooling efficiency of the system. An increase of water flow rate causes a decrease on surface temperature and an increase on effectiveness of porous plate and cooling efficiency of the system. Numerical results prepared by RNG k-ε turbulence model have a good approximation and show a similar flow characteristic with experimental results. . . . . . Keywords Computational fluid dynamics Heat transfer Navier-stokes-equation RNG k-ε model Structured surface Transpiration cooling −2 -1 Nomenclature h Outlet enthalpy of water, W.m .°C waterout 2 −2 -1 A Surface area of porous http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Heat and Mass Transfer Springer Journals

A numerical analysis of transpiration cooling as an air cooling mechanism

Loading next page...
 
/lp/springer_journal/a-numerical-analysis-of-transpiration-cooling-as-an-air-cooling-29kyZzBHwQ
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Industrial Chemistry/Chemical Engineering; Thermodynamics
ISSN
0947-7411
eISSN
1432-1181
D.O.I.
10.1007/s00231-018-2391-6
Publisher site
See Article on Publisher Site

Abstract

The present study is focused on investigation of heat transfer from a porous plate by cooling of air with transpiration cooling. Effects of Reynolds number of hot gas stream, inlet temperature of air and mass flow rate of water on local wall temperature and cooling effectiveness of porous flat plate and efficiency of the system inside a rectangular channel with air as a hot gas stream and water as a coolant were investigated numerically. Increasing Reynolds number causes an increase on surface temperature and a decrease on cooling effectiveness of porous plate and efficiency of the system. Increasing of air inlet temperature does not cause a significant increase on cooling efficiency of the system. An increase of water flow rate causes a decrease on surface temperature and an increase on effectiveness of porous plate and cooling efficiency of the system. Numerical results prepared by RNG k-ε turbulence model have a good approximation and show a similar flow characteristic with experimental results. . . . . . Keywords Computational fluid dynamics Heat transfer Navier-stokes-equation RNG k-ε model Structured surface Transpiration cooling −2 -1 Nomenclature h Outlet enthalpy of water, W.m .°C waterout 2 −2 -1 A Surface area of porous

Journal

Heat and Mass TransferSpringer Journals

Published: May 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off