A novel widespread Matlab/Simulink based modeling of InGaN double hetero-junction p-i-n solar cell

A novel widespread Matlab/Simulink based modeling of InGaN double hetero-junction p-i-n solar cell This paper presents a model of a photovoltaic (PV) cell based on InGaN instead of regular cells made up of silicon, while polarization effects are considered. The model is constructed under Matlab/Simulink environment upon the equivalent electrical circuit of the PV cell. The way components of the equivalent electrical circuit are connected leads to establishing mathematical equations, thus, describing the behavior of the PV cell under different environmental and physical conditions. Once the PV cell model is validated by means of experimental results, it has been extended to build a model of a PV module made up of numerous cells interconnected in diverse potential configurations depending on the expected outputs in terms of current/voltage. The model has shown promising and accurate results and would aid researchers in the field of power electronics to consider it as a truthful PV generator (PVG). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Energy and Environmental Engineering Springer Journals

A novel widespread Matlab/Simulink based modeling of InGaN double hetero-junction p-i-n solar cell

Loading next page...
 
/lp/springer_journal/a-novel-widespread-matlab-simulink-based-modeling-of-ingan-double-wE5hjPxHj4
Publisher
Springer Journals
Copyright
Copyright © 2017 by The Author(s)
Subject
Engineering; Renewable and Green Energy
ISSN
2008-9163
eISSN
2251-6832
D.O.I.
10.1007/s40095-017-0243-7
Publisher site
See Article on Publisher Site

Abstract

This paper presents a model of a photovoltaic (PV) cell based on InGaN instead of regular cells made up of silicon, while polarization effects are considered. The model is constructed under Matlab/Simulink environment upon the equivalent electrical circuit of the PV cell. The way components of the equivalent electrical circuit are connected leads to establishing mathematical equations, thus, describing the behavior of the PV cell under different environmental and physical conditions. Once the PV cell model is validated by means of experimental results, it has been extended to build a model of a PV module made up of numerous cells interconnected in diverse potential configurations depending on the expected outputs in terms of current/voltage. The model has shown promising and accurate results and would aid researchers in the field of power electronics to consider it as a truthful PV generator (PVG).

Journal

International Journal of Energy and Environmental EngineeringSpringer Journals

Published: Aug 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off