A Novel Transporter, Pfcrt, Confers Antimalarial Drug Resistance

A Novel Transporter, Pfcrt, Confers Antimalarial Drug Resistance The elucidation of the molecular details of drug resistance phenomena is a very active area of research that crosses many disciplinary boundaries. Drug resistance is due to altered drug-target interaction, and/or dysregulated signaling related to cell growth and death. Since many drugs need to rapidly diffuse into and within cells in order to find their targets, and since transmembrane ion transport is an important facet of cellular signaling, it is not surprising that membrane transport phenomena have been implicated in the evolution of drug resistance in tumor cells, bacteria, and intracellular parasites such as Plasmodium falciparum, the causative agent of the most lethal form of human malaria. The most infamous membrane transport protein involved in drug resistance is "MDR protein" or "P-glycoprotein" (Pgp),1 which was found to be overexpressed in drug-resistant tumor cells over 15 years ago, and which is representative of the ATP-binding cassette (ABC) superfamily that also includes the important cystic fibrosis transmembrane conductance regulator (CFTR) and sulfonyl urea receptor (SUR) ion channels. Availability of mouse and human Pgp cDNA rather quickly led to the identification of homologues in many species, including P. falciparum, and these were de facto assumed to be the ultimate determinants of drug resistance in these systems as well. However, research over the past 10 years has taught us that this assumption likely is wrong and that the situation is more complex. We now know that human Pgp plays a relatively minor role in clinically relevant tumor drug resistance, and that an integral membrane protein with no homology to the ABC superfamily, Pfcrt, ultimately confers chloroquine resistance in P. falciparum. Thus, the general hypothesis that membrane transport and membrane transport proteins are important in drug resistance phenomena remains correct, but at a genetic, biochemical, and physiological level we have recently witnessed a few very interesting surprises. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

A Novel Transporter, Pfcrt, Confers Antimalarial Drug Resistance

Loading next page...
 
/lp/springer_journal/a-novel-transporter-pfcrt-confers-antimalarial-drug-resistance-qemG02wITZ
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag New York Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-002-1019-3
Publisher site
See Article on Publisher Site

Abstract

The elucidation of the molecular details of drug resistance phenomena is a very active area of research that crosses many disciplinary boundaries. Drug resistance is due to altered drug-target interaction, and/or dysregulated signaling related to cell growth and death. Since many drugs need to rapidly diffuse into and within cells in order to find their targets, and since transmembrane ion transport is an important facet of cellular signaling, it is not surprising that membrane transport phenomena have been implicated in the evolution of drug resistance in tumor cells, bacteria, and intracellular parasites such as Plasmodium falciparum, the causative agent of the most lethal form of human malaria. The most infamous membrane transport protein involved in drug resistance is "MDR protein" or "P-glycoprotein" (Pgp),1 which was found to be overexpressed in drug-resistant tumor cells over 15 years ago, and which is representative of the ATP-binding cassette (ABC) superfamily that also includes the important cystic fibrosis transmembrane conductance regulator (CFTR) and sulfonyl urea receptor (SUR) ion channels. Availability of mouse and human Pgp cDNA rather quickly led to the identification of homologues in many species, including P. falciparum, and these were de facto assumed to be the ultimate determinants of drug resistance in these systems as well. However, research over the past 10 years has taught us that this assumption likely is wrong and that the situation is more complex. We now know that human Pgp plays a relatively minor role in clinically relevant tumor drug resistance, and that an integral membrane protein with no homology to the ABC superfamily, Pfcrt, ultimately confers chloroquine resistance in P. falciparum. Thus, the general hypothesis that membrane transport and membrane transport proteins are important in drug resistance phenomena remains correct, but at a genetic, biochemical, and physiological level we have recently witnessed a few very interesting surprises.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Nov 1, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off