A novel transfer mode to reduce burst loss rate for optical burst switching networks

A novel transfer mode to reduce burst loss rate for optical burst switching networks A crucial issue in optical burst switching (OBS) networks is burst loss caused by resource contention. As a result, many methods are currently being proposed to reduce burst loss rate. These methods can be summed up into two categories: burst scheduling algorithms and contention resolutions. Both categories of methods can reduce burst loss rate to a certain degree. However, to make OBS to become a viable solution, the burst loss rate needs to be further reduced. Furthermore, almost all methods ignore the fact that an unfortunately scheduled, locally generated single-hop burst could block a number of future incoming transit bursts, though the burst just travels to its next downstream node. This phenomenon becomes more evident when links are heavily loaded in mesh OBS networks. To eliminate contention caused by single-hop traffic completely, this paper proposes a novel transfer mode called packet calking by differentiating between single-hop traffic from multihop traffic for OBS networks. An analysis model is developed to evaluate the performance of packet calking. Theoretical results are validated through extensive simulations in both ring and mesh networks. These results show that packet calking outperforms the transfer mode without packet calking in terms of burst loss rate and link utilization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

A novel transfer mode to reduce burst loss rate for optical burst switching networks

Loading next page...
Springer US
Copyright © 2009 by Springer Science+Business Media, LLC
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
Publisher site
See Article on Publisher Site


  • Terabit burst switching
    Turner, J
  • On the capacity of optical networks: a framework for comparing different transport architectures
    Weichenberg, G.; Chan, V.W.S.; Medard, M.
  • Optimal burst scheduling in optical burst switched networks
    Chen, Y.; Turner, J.S.; Mo, P.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial