A novel TaMYB4 transcription factor involved in the defence response against Puccinia striiformis f. sp. tritici and abiotic stresses

A novel TaMYB4 transcription factor involved in the defence response against Puccinia striiformis... MYB transcription factors are a large family of proteins involved in the regulation of secondary metabolism and cell shape, the enhancement of disease resistance and the response to different stresses. In this study, the role of TaMYB4 in wheat against biotic and abiotic stresses was investigated. TaMYB4 was cloned from wheat cv. Suwan11 [the leaves were infected with Puccinia striiformis f.sp. tritici (Pst)]; the TaMYB4 protein is 243 amino acids in length. In addition, TaMYB4 exhibited high similarity with BdMYB4 from Brachypodium distachyon, which was also identified as a member of the R2R3-MYB family of genes. Furthermore, transient expression analysis showed that the deduced TaMYB4 protein was localised in the nucleus of onion epidermal cells. Additionally, a yeast one-hybrid assay revealed that TaMYB4 exhibits transcriptional activity and the C-terminus is necessary for the activation of transcription. The transcript levels of TaMYB4 were observed directly and were found to be significantly upregulated in the early stage and 48 h after inoculation with the incompatible Pst. The transcripts of TaMYB4 were detected in the wheat roots, culms and leaves. Moreover, the transcription of TaMYB4 was induced by salicylic acid, ethylene, abscisic acid and methyl jasmonate hormones. The same results were obtained with cold and wound treatments. Furthermore, the knockdown of TaMYB4 expression using virus-induced gene silencing enhanced the susceptibility of wheat cultivar Suwon11 to the incompatible race of Pst. These results demonstrate that TaMYB4 plays a role in the wheat response to biotic stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A novel TaMYB4 transcription factor involved in the defence response against Puccinia striiformis f. sp. tritici and abiotic stresses

Loading next page...
 
/lp/springer_journal/a-novel-tamyb4-transcription-factor-involved-in-the-defence-response-YmouC1OB5v
Publisher
Springer Netherlands
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-013-0156-7
Publisher site
See Article on Publisher Site

Abstract

MYB transcription factors are a large family of proteins involved in the regulation of secondary metabolism and cell shape, the enhancement of disease resistance and the response to different stresses. In this study, the role of TaMYB4 in wheat against biotic and abiotic stresses was investigated. TaMYB4 was cloned from wheat cv. Suwan11 [the leaves were infected with Puccinia striiformis f.sp. tritici (Pst)]; the TaMYB4 protein is 243 amino acids in length. In addition, TaMYB4 exhibited high similarity with BdMYB4 from Brachypodium distachyon, which was also identified as a member of the R2R3-MYB family of genes. Furthermore, transient expression analysis showed that the deduced TaMYB4 protein was localised in the nucleus of onion epidermal cells. Additionally, a yeast one-hybrid assay revealed that TaMYB4 exhibits transcriptional activity and the C-terminus is necessary for the activation of transcription. The transcript levels of TaMYB4 were observed directly and were found to be significantly upregulated in the early stage and 48 h after inoculation with the incompatible Pst. The transcripts of TaMYB4 were detected in the wheat roots, culms and leaves. Moreover, the transcription of TaMYB4 was induced by salicylic acid, ethylene, abscisic acid and methyl jasmonate hormones. The same results were obtained with cold and wound treatments. Furthermore, the knockdown of TaMYB4 expression using virus-induced gene silencing enhanced the susceptibility of wheat cultivar Suwon11 to the incompatible race of Pst. These results demonstrate that TaMYB4 plays a role in the wheat response to biotic stress.

Journal

Plant Molecular BiologySpringer Journals

Published: Nov 29, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off