A novel strategy for genetic dissection of complex traits: the population of specific chromosome substitution strains from laboratory and wild mice

A novel strategy for genetic dissection of complex traits: the population of specific chromosome... The mouse is an irreplaceable model for understanding the precise genetic mechanisms of mammalian physiological pathways. Thousands of quantitative trait loci (QTLs) have been mapped onto the mouse genome during the last two decades. However, only a few genes’ underlying complex traits have been successfully identified, and rapid fine mapping of QTL genes still remains a challenge for mouse geneticists. Currently, the Collaborative Cross (CC) has proceeded to the goal of establishing more than 1,000 recombinant inbred strains for the sub-centimorgan mapping resolution of QTL loci. In this article, a novel complementary strategy, designated as population of specific chromosome substitution strains or PSCSS, is proposed for rapid fine mapping of QTLs on the substituted chromosome. One specific chromosome (Chr 1) of recipient mouse strain C57BL/6 J has been substituted by homologous counterparts from five different inbred strains (C3H/He, FVB/N, AKR, NOD/LtJ, NZW/LacJ), an outbred line Kunmin mouse in China, and 23 wild mice captured in different localities. The primary genetic studies on the structure of these wild donor chromosomes (Chr 1) show that these donor chromosomes harbor extensive genetic polymorphisms, with a high density of SNP distribution, abundant variations of STR alleles, and a high level of historical recombination accumulation. These specific chromosome substitution strains eventually form a special population that has the identical genetic background of the recipient strain and differs only in the donor chromosomes. With simple association studies, known QTLs on the donor chromosome can be rapidly mapped in high resolution without requirement of further crosses. This approach, taking advantage of the extensive genetic polymorphisms of wild resources and chromosome substitution strategy, brings a new outlook for genetic dissection of complex traits. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

A novel strategy for genetic dissection of complex traits: the population of specific chromosome substitution strains from laboratory and wild mice

Loading next page...
 
/lp/springer_journal/a-novel-strategy-for-genetic-dissection-of-complex-traits-the-DlA25cNrYM
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Life Sciences; Zoology ; Anatomy ; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-010-9270-x
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial