A novel quantum representation of color digital images

A novel quantum representation of color digital images In this paper, we propose a novel quantum representation of color digital images (NCQI) in quantum computer. The freshly proposed quantum image representation uses the basis state of a qubit sequence to store the RGB value of each pixel. All pixels are stored into a normalized superposition state and can be operated simultaneously. Comparison results with the latest multi-channel representation for quantum image reveal that NCQI can achieve a quadratic speedup in quantum image preparation. Meanwhile, some NCQI-based image processing operations are discussed. Analyses and comparisons demonstrate that many color operations can be executed conveniently based on NCQI. Therefore, the proposed NCQI model is more flexible and better suited to carry out color quantum image processing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

A novel quantum representation of color digital images

Loading next page...
 
/lp/springer_journal/a-novel-quantum-representation-of-color-digital-images-eJU0eFRpcI
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-016-1463-0
Publisher site
See Article on Publisher Site

Abstract

In this paper, we propose a novel quantum representation of color digital images (NCQI) in quantum computer. The freshly proposed quantum image representation uses the basis state of a qubit sequence to store the RGB value of each pixel. All pixels are stored into a normalized superposition state and can be operated simultaneously. Comparison results with the latest multi-channel representation for quantum image reveal that NCQI can achieve a quadratic speedup in quantum image preparation. Meanwhile, some NCQI-based image processing operations are discussed. Analyses and comparisons demonstrate that many color operations can be executed conveniently based on NCQI. Therefore, the proposed NCQI model is more flexible and better suited to carry out color quantum image processing.

Journal

Quantum Information ProcessingSpringer Journals

Published: Dec 28, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off