A novel quantum representation for log-polar images

A novel quantum representation for log-polar images The power of quantum mechanics has been extensively exploited to meet the high computational requirement of classical image processing. However, existing quantum image models can only represent the images sampled in Cartesian coordinates. In this paper, quantum log-polar image (QUALPI), a novel quantum image representation is proposed for the storage and processing of images sampled in log-polar coordinates. In QUALPI, all the pixels of a QUALPI are stored in a normalized superposition and can be operated on simultaneously. A QUALPI can be constructed from a classical image via a preparation whose complexity is approximately linear in the image size. Some common geometric transformations, such as symmetry transformation, rotation, etc., can be performed conveniently with QUALPI. Based on these geometric transformations, a fast rotation-invariant quantum image registration algorithm is designed for log-polar images. Performance comparison with classical brute-force image registration method reveals that our quantum algorithm can achieve a quartic speedup. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

A novel quantum representation for log-polar images

Loading next page...
 
/lp/springer_journal/a-novel-quantum-representation-for-log-polar-images-6g4LTjGyH6
Publisher
Springer US
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-013-0587-8
Publisher site
See Article on Publisher Site

Abstract

The power of quantum mechanics has been extensively exploited to meet the high computational requirement of classical image processing. However, existing quantum image models can only represent the images sampled in Cartesian coordinates. In this paper, quantum log-polar image (QUALPI), a novel quantum image representation is proposed for the storage and processing of images sampled in log-polar coordinates. In QUALPI, all the pixels of a QUALPI are stored in a normalized superposition and can be operated on simultaneously. A QUALPI can be constructed from a classical image via a preparation whose complexity is approximately linear in the image size. Some common geometric transformations, such as symmetry transformation, rotation, etc., can be performed conveniently with QUALPI. Based on these geometric transformations, a fast rotation-invariant quantum image registration algorithm is designed for log-polar images. Performance comparison with classical brute-force image registration method reveals that our quantum algorithm can achieve a quartic speedup.

Journal

Quantum Information ProcessingSpringer Journals

Published: May 21, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off