A novel quantum representation for log-polar images

A novel quantum representation for log-polar images The power of quantum mechanics has been extensively exploited to meet the high computational requirement of classical image processing. However, existing quantum image models can only represent the images sampled in Cartesian coordinates. In this paper, quantum log-polar image (QUALPI), a novel quantum image representation is proposed for the storage and processing of images sampled in log-polar coordinates. In QUALPI, all the pixels of a QUALPI are stored in a normalized superposition and can be operated on simultaneously. A QUALPI can be constructed from a classical image via a preparation whose complexity is approximately linear in the image size. Some common geometric transformations, such as symmetry transformation, rotation, etc., can be performed conveniently with QUALPI. Based on these geometric transformations, a fast rotation-invariant quantum image registration algorithm is designed for log-polar images. Performance comparison with classical brute-force image registration method reveals that our quantum algorithm can achieve a quartic speedup. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

A novel quantum representation for log-polar images

Loading next page...
 
/lp/springer_journal/a-novel-quantum-representation-for-log-polar-images-6g4LTjGyH6
Publisher
Springer US
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-013-0587-8
Publisher site
See Article on Publisher Site

Abstract

The power of quantum mechanics has been extensively exploited to meet the high computational requirement of classical image processing. However, existing quantum image models can only represent the images sampled in Cartesian coordinates. In this paper, quantum log-polar image (QUALPI), a novel quantum image representation is proposed for the storage and processing of images sampled in log-polar coordinates. In QUALPI, all the pixels of a QUALPI are stored in a normalized superposition and can be operated on simultaneously. A QUALPI can be constructed from a classical image via a preparation whose complexity is approximately linear in the image size. Some common geometric transformations, such as symmetry transformation, rotation, etc., can be performed conveniently with QUALPI. Based on these geometric transformations, a fast rotation-invariant quantum image registration algorithm is designed for log-polar images. Performance comparison with classical brute-force image registration method reveals that our quantum algorithm can achieve a quartic speedup.

Journal

Quantum Information ProcessingSpringer Journals

Published: May 21, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off