A novel promoter from soybean that is active in a complex developmental pattern with and without its proximal 650 base pairs

A novel promoter from soybean that is active in a complex developmental pattern with and without... We report the isolation of a novel soybean gene, Msg, which is highly expressed in developing soybean pods. The gene shows significant homology to a family of fruit- and flower-specific genes, designated the major latex protein (MLP) homologues, so far reported in only a few species and whose functions are unknown. The MLPs are more distantly related to a group of pathogenesis-related proteins (IPR or PR-10) whose functions are likewise unknown. This is the first report of a MLP homologue in a plant for which there is already an IPR-protein reported. We performed an analysis of the Msg promoter with 14 different promoter fragments ranging from 0.65 kb to 2.26 kb, fused to the uidA (GUS) gene. High transient expression was obtained with all the constructs upon particle bombardment in soybean and green bean pods. Stable Arabidopsis transformants were obtained with the Agrobacterium vacuum infiltration method. The promoter is fully active in Arabidopsis only in plants transformed with the 2.26 kb fragment promoter, expressing GUS in nectaries, nodes, short style and in guard cells of the silique, pedicel and stem but not in mature leaves. Surprisingly, the proximal 650 bp TATA-containing region cannot function on its own in Arabidopsis and can be deleted without a change in expression pattern in both Arabidopsis and soybean. Thus, tissue-specific regions of the complex Msg promoter reside in the distal 5′ regions upstream of a dispensable TATA box in contrast to many examples of tissue-specific elements that reside much closer to the TATA box. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A novel promoter from soybean that is active in a complex developmental pattern with and without its proximal 650 base pairs

Loading next page...
Kluwer Academic Publishers
Copyright © 1999 by Kluwer Academic Publishers
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial