A novel model for graphene-based ion-sensitive field-effect transistor

A novel model for graphene-based ion-sensitive field-effect transistor Graphene field-effect transistors (GFETs) are a promising candidate for sensing applications because of their high charge carrier mobility, high flexibility, biocompatibility and the ideal coupling between graphene charge carriers and surface potential. Coating graphene with sensing membrane fabricated high-k materials that can be used to pH sensing in aqueous solutions. This work presents the development of an analytical model for GFET-based pH sensor. This model can help in the investigation of the sensitivity mechanism related to the ambipolar characteristic of the GFET and theory of site binding and a Gouy–Chapman–Stern model. Finally, simulation results are compared with those extracted from experimental measurements and a good agreement is observed which validates the proposed analytical model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Computational Electronics Springer Journals

A novel model for graphene-based ion-sensitive field-effect transistor

Loading next page...
 
/lp/springer_journal/a-novel-model-for-graphene-based-ion-sensitive-field-effect-transistor-YX8vrImQxj
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Mathematical and Computational Engineering; Electrical Engineering; Theoretical, Mathematical and Computational Physics; Optical and Electronic Materials; Mechanical Engineering
ISSN
1569-8025
eISSN
1572-8137
D.O.I.
10.1007/s10825-017-1068-6
Publisher site
See Article on Publisher Site

Abstract

Graphene field-effect transistors (GFETs) are a promising candidate for sensing applications because of their high charge carrier mobility, high flexibility, biocompatibility and the ideal coupling between graphene charge carriers and surface potential. Coating graphene with sensing membrane fabricated high-k materials that can be used to pH sensing in aqueous solutions. This work presents the development of an analytical model for GFET-based pH sensor. This model can help in the investigation of the sensitivity mechanism related to the ambipolar characteristic of the GFET and theory of site binding and a Gouy–Chapman–Stern model. Finally, simulation results are compared with those extracted from experimental measurements and a good agreement is observed which validates the proposed analytical model.

Journal

Journal of Computational ElectronicsSpringer Journals

Published: Sep 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off