A novel method to identify the DNA motifs recognized by a defined transcription factor

A novel method to identify the DNA motifs recognized by a defined transcription factor The interaction between a protein and DNA is involved in almost all cellular functions, and is vitally important in cellular processes. Two complementary approaches are used to detect the interactions between a transcription factor (TF) and DNA, i.e. the TF-centered or protein–DNA approach, and the gene-centered or DNA–protein approach. The yeast one-hybrid (Y1H) is a powerful and widely used system to identify DNA–protein interactions. However, a powerful method to study protein–DNA interactions like Y1H is lacking. Here, we developed a protein–DNA method based on the Y1H system to identify the motifs recognized by a defined TF, termed TF-centered Y1H. In this system, a random short DNA sequence insertion library was generated as the prey DNA sequences to interact with a defined TF as the bait. Using this system, novel interactions were detected between DNA motifs and the AtbZIP53 protein from Arabidopsis. We identified six motifs that were specifically bound by AtbZIP53, including five known motifs (DOF, G-box, I-box, BS1 and MY3) and a novel motif BRS1 [basic leucine zipper (bZIP) Recognized Site 1]. The different subfamily bZIP members also recognize these six motifs, further confirming the reliability of the TF-centered Y1H results. Taken together, these results demonstrated that TF-centered Y1H could identify quickly the motifs bound by a defined TF, representing a reliable and efficient approach with the advantages of Y1H. Therefore, this TF-centered Y1H may have a wide application in protein–DNA interaction studies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A novel method to identify the DNA motifs recognized by a defined transcription factor

Loading next page...
 
/lp/springer_journal/a-novel-method-to-identify-the-dna-motifs-recognized-by-a-defined-7WOaeVAymt
Publisher
Springer Netherlands
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-014-0234-5
Publisher site
See Article on Publisher Site

Abstract

The interaction between a protein and DNA is involved in almost all cellular functions, and is vitally important in cellular processes. Two complementary approaches are used to detect the interactions between a transcription factor (TF) and DNA, i.e. the TF-centered or protein–DNA approach, and the gene-centered or DNA–protein approach. The yeast one-hybrid (Y1H) is a powerful and widely used system to identify DNA–protein interactions. However, a powerful method to study protein–DNA interactions like Y1H is lacking. Here, we developed a protein–DNA method based on the Y1H system to identify the motifs recognized by a defined TF, termed TF-centered Y1H. In this system, a random short DNA sequence insertion library was generated as the prey DNA sequences to interact with a defined TF as the bait. Using this system, novel interactions were detected between DNA motifs and the AtbZIP53 protein from Arabidopsis. We identified six motifs that were specifically bound by AtbZIP53, including five known motifs (DOF, G-box, I-box, BS1 and MY3) and a novel motif BRS1 [basic leucine zipper (bZIP) Recognized Site 1]. The different subfamily bZIP members also recognize these six motifs, further confirming the reliability of the TF-centered Y1H results. Taken together, these results demonstrated that TF-centered Y1H could identify quickly the motifs bound by a defined TF, representing a reliable and efficient approach with the advantages of Y1H. Therefore, this TF-centered Y1H may have a wide application in protein–DNA interaction studies.

Journal

Plant Molecular BiologySpringer Journals

Published: Aug 10, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off