A novel method of experimental evaluation on BTA tool geometries

A novel method of experimental evaluation on BTA tool geometries Towards the problem of closed space of Boring and Trepanning Association (BTA) drill, this paper presents a novel experimental method to evaluate BTA tool geometries, and a turning-based test is conducted to simulate drilling. The three inserts of BTA drill are replaced by the three turning inserts, the rotation of BTA drill is transformed by workpiece rotation in turning, the feed of BTA drill changes into the feed of turning inserts, and the cutting area per BTA insert is simulated by the cutting depth in turning. To implement the approach, three angles, consisting of edge inclination, flank angle and edge declination, are organised by a three-factor and three-level Taguchi experiment for each BTA insert, e.g. outside insert, centre insert and middle insert. Cutting force, chip patterns and chip curl radius are observed and measured to evaluate the insert geometries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

A novel method of experimental evaluation on BTA tool geometries

Loading next page...
 
/lp/springer_journal/a-novel-method-of-experimental-evaluation-on-bta-tool-geometries-YOs4i1fJSW
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0074-y
Publisher site
See Article on Publisher Site

Abstract

Towards the problem of closed space of Boring and Trepanning Association (BTA) drill, this paper presents a novel experimental method to evaluate BTA tool geometries, and a turning-based test is conducted to simulate drilling. The three inserts of BTA drill are replaced by the three turning inserts, the rotation of BTA drill is transformed by workpiece rotation in turning, the feed of BTA drill changes into the feed of turning inserts, and the cutting area per BTA insert is simulated by the cutting depth in turning. To implement the approach, three angles, consisting of edge inclination, flank angle and edge declination, are organised by a three-factor and three-level Taguchi experiment for each BTA insert, e.g. outside insert, centre insert and middle insert. Cutting force, chip patterns and chip curl radius are observed and measured to evaluate the insert geometries.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Feb 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off