A novel flower-specific Arabidopsis gene related to both pathogen-induced and developmentally regulated plant β-1,3- glucanase genes

A novel flower-specific Arabidopsis gene related to both pathogen-induced and developmentally... β-1,3-glucanases are usually associated with plant defense responses, although some are also developmentally or hormonally regulated. We characterized two Arabidopsis genes linked in a tandem array, BG4 and BG5, encoding putative novel isoforms of β-1,3-glucanase. The deduced polypeptides, BG4 and BG5, were highly similar to each other (89% amino acid identity) but only moderately related (32 to 41% amino acid identity) to the different categories of previously characterized β-1,3-glucanases, suggesting that BG4 and BG5 may represent a novel class of β-1,3-glucanases in plants. Neither of the genes was responsive to pathogen or SA induction in contrast to the previously identified Arabidopsis β-1,3-glucanases, nor could we detect any developmental or hormonally induced expression in the vegetative parts of the plants. Both RNA blot and in situ hybridization data demonstrated that the BG4 gene was specifically expressed in the style and septum of the ovary, suggesting that the corresponding protein is involved in the reproductive process of the plant. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A novel flower-specific Arabidopsis gene related to both pathogen-induced and developmentally regulated plant β-1,3- glucanase genes

Loading next page...
 
/lp/springer_journal/a-novel-flower-specific-arabidopsis-gene-related-to-both-pathogen-yGkxcp2d63
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006194822666
Publisher site
See Article on Publisher Site

Abstract

β-1,3-glucanases are usually associated with plant defense responses, although some are also developmentally or hormonally regulated. We characterized two Arabidopsis genes linked in a tandem array, BG4 and BG5, encoding putative novel isoforms of β-1,3-glucanase. The deduced polypeptides, BG4 and BG5, were highly similar to each other (89% amino acid identity) but only moderately related (32 to 41% amino acid identity) to the different categories of previously characterized β-1,3-glucanases, suggesting that BG4 and BG5 may represent a novel class of β-1,3-glucanases in plants. Neither of the genes was responsive to pathogen or SA induction in contrast to the previously identified Arabidopsis β-1,3-glucanases, nor could we detect any developmental or hormonally induced expression in the vegetative parts of the plants. Both RNA blot and in situ hybridization data demonstrated that the BG4 gene was specifically expressed in the style and septum of the ovary, suggesting that the corresponding protein is involved in the reproductive process of the plant.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off