A Novel Family of Ca2+/Calmodulin-Binding Proteins Involved in Transcriptional Regulation: Interaction with fsh/Ring3 Class Transcription Activators

A Novel Family of Ca2+/Calmodulin-Binding Proteins Involved in Transcriptional Regulation:... A novel CaM-binding protein was isolated through protein–protein interaction based screening of an Arabidopsis cDNA expression library using a 35S calmodulin (CaM) probe. There are four additional homologs in the Arabidopsis genome with similar structures: a BTB domain in the N-terminus and a Zf-TAZ domain in the C-terminus. Hence, they were designated as AtBT1-5 (A rabidopsis t haliana BTB and TAZ domain protein). CaM-binding experiments revealed that all five AtBTs are CaM-binding proteins, and their CaM-binding domains were mapped to the C-terminus. AtBT homologs are also present in rice, but are not present in human, animal, yeast or other organisms, suggesting that the BTB and TAZ domain proteins are plant-specific. The AtBT1-smGFP fusion protein expressed in tobacco BY-2 cells showed that AtBT1 targets the nucleus. Yeast two-hybrid screening using an AtBT1 fragment as bait identified two interacting proteins (AtBET10 and AtBET9) belonging to the family of fsh/Ring3 class transcription regulators. The BTB domain of the AtBTs is required for the interaction, and this protein–protein interaction was confirmed by GST pull-down. AtBET10 also interacts with AtBT2 and AtBT4, and exhibited a transcriptional activation function in yeast cells. AtBTs exhibit varying responses to different stress stimuli, but all five genes responded rapidly to H2O2 and salicylic acid (SA) treatments. These results suggest that AtBTs play a role in transcriptional regulation, and signal molecules such as Ca2+, H2O2, and SA affect transcriptional machinery by altering the expression and conformation of AtBTs which interact with transcriptional activators such as AtBET10. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A Novel Family of Ca2+/Calmodulin-Binding Proteins Involved in Transcriptional Regulation: Interaction with fsh/Ring3 Class Transcription Activators

Loading next page...
Kluwer Academic Publishers
Copyright © 2004 by Kluwer Academic Publishers
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial