A Novel Energy-Aware Target Tracking Method by Reducing Active Nodes in Wireless Sensor Networks

A Novel Energy-Aware Target Tracking Method by Reducing Active Nodes in Wireless Sensor Networks Energy consumption is one of the main challenges in wireless sensor networks. Additionally, in target tracking algorithms, it is expected to have a longer lifetime for the network, when a better prediction algorithm is employed, since it activates fewer sensors in the network. Most target tracking methods activate a large number of nodes in sensor networks. This paper proposes a new tracking algorithm reducing the number of active nodes in both positioning and tracking by predicting the target deployment area in the next time interval according to some factors including the previous location of the target, the current speed and acceleration of the target without reducing the tracking performance. The proposed algorithm activates the sensor nodes available in the target area by predicting the target position in the next time interval. The problem of target loss is also considered and solved in the proposed tracking algorithm. In the numerical analysis, the number of nodes involved in target tracking, energy consumption and the network lifetime are compared with other tracking algorithms to show superiority of the proposed algorithm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

A Novel Energy-Aware Target Tracking Method by Reducing Active Nodes in Wireless Sensor Networks

Loading next page...
 
/lp/springer_journal/a-novel-energy-aware-target-tracking-method-by-reducing-active-nodes-Jske3mhvC1
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4013-x
Publisher site
See Article on Publisher Site

Abstract

Energy consumption is one of the main challenges in wireless sensor networks. Additionally, in target tracking algorithms, it is expected to have a longer lifetime for the network, when a better prediction algorithm is employed, since it activates fewer sensors in the network. Most target tracking methods activate a large number of nodes in sensor networks. This paper proposes a new tracking algorithm reducing the number of active nodes in both positioning and tracking by predicting the target deployment area in the next time interval according to some factors including the previous location of the target, the current speed and acceleration of the target without reducing the tracking performance. The proposed algorithm activates the sensor nodes available in the target area by predicting the target position in the next time interval. The problem of target loss is also considered and solved in the proposed tracking algorithm. In the numerical analysis, the number of nodes involved in target tracking, energy consumption and the network lifetime are compared with other tracking algorithms to show superiority of the proposed algorithm.

Journal

Wireless Personal CommunicationsSpringer Journals

Published: Feb 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off